
1

Register and Thread Structure
Optimization for GPUs

Yun (Eric) Liang, Zheng Cui, Kyle Rupnow, Deming Chen

Peking University, China

Advanced Digital Science Center, Singapore

University of Illinois at Urbana Champaign, USA

2

Modern Computing Systems

 GPUs

 Computation and bandwidth

 Three of top-five high performance machines on the June

2011 Top 500 list

 Top two machines on the Green 500 list of the most energy-

efficient supercomputers

 Heterogeneity (CPU, GPU, …) common

 Low-power embedded system

 Tegra 2/3/4

3

Modern Computing Systems

CPUs i7 @ 263mm2

 Control heavy

 Complex core

 Less space devoted to computation resources

Good at ILP

4

Modern Computing Systems

GPUs GF100 @ 529 mm2

 Simple cores

 Many cores

Data parallelism

 Good at TLP

 Bad at control

5

GPU Performance Optimization

Performance tuning is difficult

 Many architecture and application parameters

 Kernel development is a heavy lifting task

Automatic analysis and performance optimization

Register and thread structure optimization

 Joint optimization problem

6

Register Allocation

Registers

Shared

memory

SM

Registers

Shared

memory

SM ……

Large register file

 GTX480: 49152 bytes; 32768 registers (32 bit) per SM

 nvcc interface: -maxReg: maximum number of registers

used per thread.

7

Thread Structure

GridSize: number of thread blocks

BlkSize: number of threads per thread block

Total threads: gridSize x blkSize

Thread structure

 Workload of one thread

 Number of active threads

 Thread scheduling

8

Register and Thread Structure Optimization

GPU kernel performance

Single thread

performance

Number of active

threads

Register allocation per

thread
Thread Structure

9

Joint Design Space

Large design space

Counter-intuitive performance tradeoff

Performance improvement potential

10

Joint Design Space – More Kernels

11

Occupancy

30%

40%

50%

60%

70%

80%

90%

100%

16 24 32 40 48 56

O
c
c
u

p
a
n

c
y

blkSize=64 blkSize=128

blkSize=256 blkSize=512

Optimal

Default

Register Usage

0.6

0.7

0.8

0.9

1.0

1.1

1.2

16 24 32 40 48 56

S
p
e
e
d
u
p
 o

v
e
r

d
e
fa

u
lt

blkSize=64 blkSize=128

blkSize=256 blkSize=512

Optimal
Default

Register Usage

12

Challenge… and Opportunity

Large design space

 Consistent increase in the shared resource and register

limit

Need to estimate performance accurately

 Measurement not feasible

Big speedup opportunity

13

Performance Estimation

Single thread performance

 Latency of instructions

 Dependencies among instructions

 Control flow of the program

 Basic block execution frequency

14

Latency of Instruction

Assembly code: Cuobjdump

Micro-benchmarks approach

 H. Wong et al. Demystifying GPU microarchitecture

through microbenchmarking. In ISPASS, 2010.

1. MOV R5, R4;

2. F2F R4, R4;

3. FFMA R52, R55, c[xxx], R5;

4. FMUL R53, R5, xxx;

5. MOV R55, xxx;

6. FSETP P0, xxx, R5, xxx;

7. F2F R56, R52;

8. FMUL R53, R5, R53;

9. FMUL R5, R52, xxx;

10.FMUL R56, R52, R5;

11.FMUL R58, R53, xxx;

15

Dependencies among Instructions

Instruction dependency graph

 RAW, WAR, WAW

Basic block latency estimated as critical path

1

2 3 4

5 6 7 8

9

10 11

12
13 14

Instruction dependency graph

16

Control Flow Graph

Analysis of cuobjdump code to gather CFG

GPGPU-Sim to gather execution frequencies

 A. Bakhoda et al. Analyzing CUDA worloads using a

detailed GPU simulator. In ISPASS, 2009.

17

Single Thread Performance Estimation

Instruction latency

Dependencies among instructions

Control flow graph

Basic block execution frequencies

18

Kernel Performance Estimation

Overall performance depends on

 Single thread performance (Latency estimation)

 Number of active threads (Occupancy)

Register and occupancy

 Reg ratio is a linear estimate of thread latency

 Product of Reg ratio and occupancy

Performance and occupancy

 2-tuple < T, C >

 C = Cycle(thread)

 T denotes the remaining space for active threads

19

Design Space Exploration

Different DSE algorithms with tradeoffs

 GPU kernel performance

 DSE runtime

Design space exploration approaches

 Exhaustive Search (ES) – Infeasible, but optimal

 RO Search (ROS)

 Performance and Occupancy Search (POS)

 POS with filtering (POSF)

20

RO Search (ROS)

Use Reg ratio x Occupancy as performance metric

0 < Reg ratio <= 1; 0 < Occupancy <= 1

Find configurations with maximal RO value

Break ties through empirical measurement

21

Performance and Occupancy Search (POS)

Design space parameters

 gridSize, blkSize, reg, PO metric (T,C)

Pareto-optimal problem

 Two candidates, A & B: if A is better in both T & C, it

dominates B and B can be eliminated

Detailed Algorithm

 Step 1: build the pareto-optimal set of candidates using

performance estimation

 Step 2: compare candidates empirically to verify

selection

22

PO Search – Example Pareto-Optimal Set

Find pareto-optimal points and compare

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

C
:

S
in

g
le

 t
h

re
a
d

 p
e
rf

o
rm

a
n

c
e

(t
h

o
u

s
a

n
d

s
 c

y
c

le
s

)

T: remaining space for active threads

Pareto-Optimal curve

23

POS with Filtering (POSF)

Prune candidates less likely to be the optimal

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

C
:

S
in

g
le

 t
h

re
a
d

 p
e
rf

o
rm

a
n

c
e

(t
h

o
u

s
a

n
d

s
 c

y
c

le
s

)

T: remaining space for active threads

High

Occupancy

Low

Occupancy

Pareto-Optimal curve

24

Solution Summary

nvcc provides interface for register control

 Maxreg: maximal number of registers allocated per

thread

Thread structure

 blkSize and gridSize are kernel call arguments

Algorithms

 ES, ROS, POS, POSF

Suitable for compiler integration and portable to

any GPU architecture

25

Experiments

Benchmarks

Blackscholes (BS) CUDA SDK blkSize and gridSize

MarchingCubes (MC) CUDA SDK blkSize/gridSize

Nbody (NB) CUDA SDK blkSize/gridSize

Particles (Par) CUDA SDK blkSize/gridSize

3D Audio (Aud) Real-

applications

 blkSize

CFD Solver (CFD) Rodinia blkSize/gridSize

GTX480

26

Design Space

Register per thread

 16 – 63

 Threads per block

 multiple of 32 as warp size is 32

 32 to 512

POSF filter range

 0.3 – 0.5

27

Speedup on GTX480

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

BS MC NB Par Aud CFD Average

ES POS POSF ROSG
P

U
 k

e
rn

e
l
p

e
rf

o
rm

a
n

c
e

 s
p

e
e

d
u

p
 o

v
e

r
d

e
fa

u
lt

 s
e

tt
in

g

1.36X

28

Speedup on GTX480

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

BS MC NB Par Aud CFD Average

ES POS POSF ROSG
P

U
 k

e
rn

e
l
p

e
rf

o
rm

a
n

c
e

 s
p

e
e

d
u

p
 o

v
e

r
d

e
fa

u
lt

 s
e

tt
in

g

1.36X

1.34X

1.33X

1.01X

29

Design Space Exploration Runtime

Benchs Runtime (sec) Speedup

ES RO POS POSF POSF

BS 14472 55 693 244 59X

MC 25746 95 465 169 152X

NB 76490 225 667 64 1199X

Par 40560 183 416 76 531X

Aud 17454 70 1649 274 64X

CFD 4364 21 270 34 128X

Average 355X

31

Conclusion

GPU optimization of register & thread structure

 Acceleration opportunity, but design space very large

 Accurate performance estimation

 Efficient design space exploration

POS, POSF algorithm

 High improvement with small runtime overhead

 Kernel latency speedup 1.33X

 Design space exploration speedup 355X

32

Thank you !!!

