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Modern Computing Systems 

 GPUs 

 Computation and bandwidth  

 Three of top-five high performance machines on the June 

2011 Top 500 list 

 Top two machines on the Green 500 list of the most energy-

efficient supercomputers 

 Heterogeneity (CPU, GPU, …) common 

 Low-power embedded system 

 Tegra 2/3/4  
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Modern Computing Systems 

CPUs  i7 @ 263mm2 

 Control heavy 

 Complex core 

 Less space devoted to computation resources 

 

Good at ILP 



4 

Modern Computing Systems 

GPUs GF100 @ 529 mm2 

 Simple cores 

 Many cores 

 

Data parallelism 

 Good at TLP 

 Bad at control 
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GPU Performance Optimization 

Performance tuning is difficult  

 Many architecture and application parameters 

 Kernel development is a heavy lifting task 

Automatic analysis and performance optimization 

Register and thread structure optimization 

 Joint optimization problem 



6 

Register Allocation 

Registers  

Shared 

memory 

SM 

Registers  

Shared 

memory 

SM …… 

Large register file 

 GTX480: 49152 bytes; 32768 registers (32 bit) per SM 

 nvcc interface: -maxReg: maximum number of registers 

used per thread. 
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Thread Structure 

GridSize: number of thread blocks 

BlkSize: number of threads per thread block 

Total threads: gridSize x blkSize 

Thread structure 

 Workload of one thread  

 Number of active threads 

 Thread scheduling 
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Register and Thread Structure Optimization 

GPU kernel performance 

Single thread 

performance 

Number of active 

threads 

Register allocation per 

thread 
Thread Structure 
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Joint Design Space 

Large design space 

Counter-intuitive performance tradeoff 

Performance improvement potential 
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Joint Design Space – More Kernels 
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Challenge… and Opportunity 

Large design space  

 Consistent increase in the shared resource and register 

limit 

 

Need to estimate performance accurately 

 Measurement not feasible 

 

Big speedup opportunity 
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Performance Estimation 

Single thread performance 

 Latency of instructions 

 Dependencies among instructions 

 Control flow of the program 

 Basic block execution frequency 
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Latency of Instruction 

Assembly code: Cuobjdump  

Micro-benchmarks approach  

 H. Wong et al. Demystifying GPU microarchitecture 

through microbenchmarking. In ISPASS, 2010.  

1. MOV    R5,      R4; 

2. F2F       R4,      R4; 

3. FFMA  R52,    R55,    c[xxx],  R5; 

4. FMUL  R53,    R5,      xxx; 

5. MOV    R55,    xxx; 

6. FSETP P0,       xxx,    R5,       xxx; 

7. F2F       R56,    R52; 

8. FMUL  R53,    R5,      R53; 

9. FMUL  R5,      R52,    xxx; 

10.FMUL R56,     R52,    R5; 

11.FMUL R58,     R53,    xxx; 
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Dependencies among Instructions 

Instruction dependency graph 

 RAW, WAR, WAW 

Basic block latency estimated as critical path 

1 

2 3 4 

5 6 7 8 

9 

10 11 

12 
13 14 

Instruction dependency graph 
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Control Flow Graph 

Analysis of cuobjdump code to gather CFG 

GPGPU-Sim to gather execution frequencies 

 A. Bakhoda et al. Analyzing CUDA worloads using a 

detailed GPU simulator. In ISPASS, 2009. 

 

 

 

 

 

 



17 

Single Thread Performance Estimation 

Instruction latency  

Dependencies among instructions 

Control flow graph 

Basic block execution frequencies 
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Kernel Performance Estimation 

Overall performance depends on  

 Single thread performance (Latency estimation) 

 Number of active threads (Occupancy) 

Register and occupancy 

 Reg ratio is a linear estimate of thread latency  

 Product of Reg ratio and occupancy 

Performance and occupancy  

 2-tuple < T, C > 

 C = Cycle(thread) 

 T denotes the remaining space for active threads 
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Design Space Exploration 

Different DSE algorithms with tradeoffs 

 GPU kernel performance 

 DSE runtime 

 

Design space exploration approaches 

 Exhaustive Search (ES) – Infeasible, but optimal 

 RO Search (ROS)  

 Performance and Occupancy Search (POS) 

 POS with filtering (POSF)  
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RO Search (ROS)  

Use Reg ratio x Occupancy as performance metric 

0 < Reg ratio <= 1; 0 < Occupancy <= 1  

Find configurations with maximal RO value 

Break ties through empirical measurement  
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Performance and Occupancy Search (POS) 

Design space parameters 

 gridSize, blkSize, reg, PO metric (T,C) 

Pareto-optimal problem 

 Two candidates, A & B: if A is better in both T & C, it 

dominates B and B can be eliminated 

 

Detailed Algorithm 

 Step 1: build the pareto-optimal set of candidates using 

performance estimation 

 Step 2: compare candidates empirically to verify 

selection 
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PO Search – Example Pareto-Optimal Set 

Find pareto-optimal points and compare  
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POS with Filtering (POSF)  

Prune candidates less likely to be the optimal 
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Solution Summary 

nvcc provides interface for register control 

 Maxreg: maximal number of registers allocated per 

thread 

Thread structure  

 blkSize and gridSize are kernel call arguments 

 

Algorithms  

 ES, ROS, POS, POSF  

Suitable for compiler integration and portable to 

any GPU architecture 
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Experiments  

Benchmarks 

Blackscholes (BS) CUDA SDK blkSize and gridSize 

MarchingCubes (MC) CUDA SDK blkSize/gridSize 

Nbody (NB) CUDA SDK        blkSize/gridSize 

Particles (Par) CUDA SDK        blkSize/gridSize 
 

3D Audio (Aud) Real-

applications 

           blkSize 

CFD Solver (CFD) Rodinia blkSize/gridSize 

GTX480  



26 

Design Space 

Register per thread 

 16 – 63 

 Threads per block  

  multiple of 32 as warp size is 32 

  32 to 512 

POSF filter range 

 0.3 – 0.5 
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Speedup on GTX480 
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Speedup on GTX480 
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Design Space Exploration Runtime  

Benchs  Runtime (sec) Speedup 

ES RO POS POSF POSF 

BS 14472 55 693 244 59X 

MC 25746 95 465 169 152X 

NB 76490 225 667 64 1199X 

Par 40560 183 416 76 531X 

Aud 17454 70 1649 274 64X 

CFD 4364 21 270 34 128X 

Average  355X 
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Conclusion 

GPU optimization of register & thread structure 

 Acceleration opportunity, but design space very large 

 Accurate performance estimation 

 Efficient design space exploration 

 

POS, POSF algorithm 

 High improvement with small runtime overhead 

 Kernel latency speedup 1.33X 

 Design space exploration speedup 355X 
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Thank you !!! 


