<u>BAMSE</u>: A <u>Ba</u>lanced <u>Mapping</u> <u>Space Exploration Algorithm for</u> GALS-based Manycore Platforms

> Mohammad H Foroozannejad Brent Bohnenstiehl Soheil Ghiasi

Department of Electrical & Computer Engineering University of California, Davis

11111

Target Applications

• Streaming

 Cell phones, mp3 players, video conference, data encryption, graphics, packet inspection, imaging, cellular base stations

• Properties

- Infinite sequence of data items
- At any given time, operates on a small window of this sequence


```
//53° around the z axis
const R[3][3]={
        {0.6,-0.8, 0.0},
        {0.8, 0.6, 0.0},
        {0.0, 0.0, 1.0}}
Rotation3D {
   for (i=0; i<3; i++)
        for (j=0; j<3; j++)
        B[i] += R[i][j] * A[j]
   }
```


Trend in Processor Architecture

[Hashemi'11]

Productive Programming of Many-Core Platforms

Mohammad H. Foroozannejad, Matin Hashemi, Trevor Hodges, Soheil Ghiasi Electrical and Computer Engineering Department University of California, Davis

http://leps.ece.ucdavis.edu

Motivating Platform

Key Features

- 164 Enhanced Programmable Processors
- 3 Dedicated-purpose processors
- 3 Shared memories
- Long-distance circuit-switched communication network
- Dynamic Voltage and Frequency Scaling (DVFS)

[Baas et al.'08]

Globally-Synchronous Locally-Asynchronous (GALS) Architecture

- The same clock used to supply the source processor is used for the communication
 - Long communication slows down the source processor regardless of the communication volume
- Static Link Allocation (limited resources)

Problem Statement

- Task graph G in which, the vertices model application tasks, and edges represent inter-task communication.
- The hardware graph H consists the set of available cores on the chip connected, and L, a subset of CxC representing intercore links
- <u>Objective: An embedding of the task</u> graph on the hardware graph
 - Improved application performance and energy dissipation
 - Graceful runtime-quality tradeoff (applicable to dynamic mapping)

BAMSE Overview

- Constructive Approach
- Task Selection
 - Tasks visited and handled in some order
- Core Selection
 - Candidate cores for allocating the task
 - Generate partial mappings and add to a queue
- Mapping Selection
 - Maintain a number of promising partial mappings
 - Avoid state explosion
- Balancing greediness (runtime) with mapping space coverage (quality) using a few parameters
- Priority-based multi objective cost function:
 - Longest Connection (LC)
 - <u>Total number of Connections (TC)</u>
 - Cores Bounding Box <u>A</u>rea (A)

Task Selection

• Unconstrained BFS

 \circ Maximum Distance to Children (MDC) = 4

Cuthill-McKee BFS

Children are sorted in increasing order of their degree (MDC = 3)
 12345678

000000000

C D F H

DĖ

F

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

- Select cores that are close to the mapped connected tasks
 - Intuition: minimize the cost increase
 - Available cores are considered in batches, according to their contribution to the cost function
 - <u>Parameter</u>: Minimum number of Potential Cores(MPC)
 - Unavailable cores are removed from consideration

Core Selection

MPC = 2

The following Partial Mappings are created after mapping node \mathbf{F} There are 12 mappings in the list with four different costs. An example partial mapping for each cost is shown.

Link Assignment

- Due to limited network resources, not all mappings yield feasible implementations.
- Simultaneous mapping and link assignment
 - A bookkeeping table keeps track of reserved interconnect resources.

Enhancements to the Baseline

- Look-Ahead
 - Mapping some 'future' tasks to better sort the partial mapping list.
 - Helps to reduce the Window Size
 - <u>Parameter</u>: The Forwarding Number (FN). MDC can be heuristically used as FN to estimate the impact of all children of visited tasks.
- Redundant Mapping Elimination
 - Based on mapping of tasks with connection to unmapped tasks, and the cost of partial mappings

Fixed Mappings

 Fixed mappings are dictated by the platform architecture (e.g., hardware accelerators) or programmers preference/insight

 Handled naturally by prioritizing their ordering in Task Selection

Empirical Validation

Application Name	# Nodes	# Edges	D	MDC
Viterbi Decoder	30	35	3	4
802.11a B.B. Rx.	25	40	6	9
Small AES	59	79	3	4
Large AES	137	176	6	8
H.264/AVC Encoder	115	165	7	24

D: Maximum undirected degree of the task graph MDC: Maximum Distance to Children with Cuthill-McKee BFS

802.11a Broad Band Receiver Graph

Example: 802.11a Receiver

Empirical Validation

Application		LC	TC	Time	
	Manual	1	35	-	
Viterbi Decoder	BAMSE	1	35	1 (sec)	
	ILP**	1	35	46 (hours)	
802.11a B.B. Rx.	Manual	6	58	-	
	BAMSE	3	51	13 (sec)	
	ILP**	3	51	58 (hours)	
Small AES	Manual	3	106	-	
	BAMSE	2	86	2 (sec)	
	ILP*	3	105	10 (days)	
Large AES	Manual	5	254	-	
	BAMSE	3	273	170 (sec)	
	ILP*	5	328	10 (days)	
H.264/AVC Encoder	Manual	17	353	-	
	BAMSE	6	336	273 (sec)	
	ILP*	7	288	10 (days)	

- ILP* number are obtained by terminating the solver after 10 days.
- ILP** are optimal, however, a smaller hardware graph (Mesh of 6X6 cores) is exposed to the solver to accelerate it.

Parameter Space Exploration

Future Work

Automatic Parameter Tuning

- Space too large for manual configuration
- Core-Task "suitability metric":
 - Matching tasks with intensive workload to faster processors
- Dynamic Mapping
 - Launching and terminating applications
 - Incremental mapping

Questions?

Thank you