
BAMSE: A Balanced Mapping
Space Exploration Algorithm for
GALS-based Manycore Platforms

Mohammad H Foroozannejad
Brent Bohnenstiehl
Soheil Ghiasi

Department of Electrical &
Computer Engineering
University of California, Davis

Target Applications

 Streaming
 Cell phones , mp3 players, video

conference,
data encryption, graphics, packet
inspection, imaging, cellular base stations

 Properties
 Infinite sequence of data items
 At any given time, operates on

a small window of this sequence
5 5 2 6 4 1 8 9 3 input

output -1 7 2 0.4 7.2 1

//53° around the z axis
const R[3][3]={
 {0.6,-0.8, 0.0},
 {0.8, 0.6, 0.0},
 {0.0, 0.0, 1.0}}
Rotation3D {
 for (i=0; i<3; i++)
 for (j=0; j<3; j++)
 B[i] += R[i][j] * A[j]
 }

Trend in Processor Architecture

[Hashemi’11]

 Key Features
 164 Enhanced Programmable

Processors
 3 Dedicated-purpose processors
 3 Shared memories
 Long-distance circuit-switched

communication network
 Dynamic Voltage and Frequency

Scaling (DVFS)

Motivating Platform

[Baas et al.’08]

Globally-Synchronous Locally-
Asynchronous (GALS) Architecture

 The same clock used to supply the source
processor is used for the communication
 Long communication slows down the source

processor regardless of the communication volume
 Static Link Allocation (limited resources)

[Baas et al.’10]

Problem Statement

 Task graph G in which, the vertices model
application tasks, and edges represent
inter-task communication.

 The hardware graph H consists the set of
available cores on the chip connected,
and L, a subset of C×C representing inter-
core links

 Objective: An embedding of the task
graph on the hardware graph
 Improved application performance and energy

dissipation
 Graceful runtime-quality tradeoff (applicable to

dynamic mapping)

BAMSE Overview
 Constructive Approach
 Task Selection

 Tasks visited and handled in some order
 Core Selection

 Candidate cores for allocating the task
 Generate partial mappings and add to a

queue
 Mapping Selection

 Maintain a number of promising partial
mappings

 Avoid state explosion

 Balancing greediness (runtime) with
mapping space coverage (quality) using a
few parameters

 Priority-based multi objective cost function:
 Longest Connection (LC)
 Total number of Connections (TC)
 Cores Bounding Box Area (A)

Task Selection

Core Selection

Mapping
Selection

Task Selection

 Breath First Search
 Unconstrained BFS

 Maximum Distance to Children (MDC) = 4
 Cuthill-McKee BFS

 Children are sorted in increasing order of their
degree (MDC = 3)

Core Selection

 Select cores that are close to the mapped
connected tasks
 Intuition: minimize the cost increase
 Available cores are considered in batches, according

to their contribution to the cost function
 Parameter: Minimum number of Potential Cores(MPC)
 Unavailable cores are removed from consideration

MPC = 1 MPC = 2

The following Partial Mappings are created after mapping node F
There are 12 mappings in the list with four different costs. An example
partial mapping for each cost is shown.

Mapping Selection

 Generated partial mappings are added to a
sorted list (based on cost)

 To avoid state explosion, the list is trimmed
 Parameter: Window Size (WS)

 Due to limited network resources, not all
mappings yield feasible implementations.

 Simultaneous mapping and link
assignment
 A bookkeeping table keeps track of reserved

interconnect resources.

Link Assignment

Enhancements to the Baseline
 Look-Ahead

 Mapping some ‘future’ tasks to better sort the
partial mapping list.

 Helps to reduce the Window Size
 Parameter: The Forwarding Number (FN). MDC

can be heuristically used as FN to estimate the
impact of all children of visited tasks.

 Redundant Mapping Elimination
 Based on mapping of tasks with connection to

unmapped tasks, and the cost of partial mappings

Fixed Mappings

 Fixed mappings are dictated by the platform
architecture (e.g., hardware accelerators) or
programmers preference/insight
 Handled naturally by prioritizing their ordering in

Task Selection

…

Empirical Validation

D: Maximum undirected degree of the task graph
MDC: Maximum Distance to Children with Cuthill-McKee BFS

802.11a Broad Band Receiver Graph

[Tran’08]

Example: 802.11a Receiver
Manual Mapping

Longest Connection = 6
Total Connections = 59

BAMSE

Longest Connection = 3
Total Connection = 51

[Tran’08]

Empirical Validation

• ILP* number are obtained by terminating the solver after 10 days.
• ILP** are optimal, however, a smaller hardware graph (Mesh of

6X6 cores) is exposed to the solver to accelerate it.

Parameter Space Exploration

Data from 2400 runs of
WS = 1 to 300 and MPC= 1 to 8

Acceptance Threshold of Relative Cost:
0% (best result)  LC = 6, TC = 336
 # of acceptable mappings = 4
10%  LC = 6, TC = 356
 # of acceptable mappings = 10
50%  LC = 9, TC = 456
 # of acceptable mappings = 2150

Based on random sampling of
the parameter space

Future Work

 Automatic Parameter Tuning
 Space too large for manual configuration

 Core-Task “suitability metric”:
 Matching tasks with intensive workload to

faster processors
 Dynamic Mapping

 Launching and terminating applications
 Incremental mapping

Questions?

Thank you

	BAMSE: A Balanced Mapping Space Exploration Algorithm for GALS-based Manycore Platforms
	Target Applications
	Trend in Processor Architecture
	Slide Number 4
	Motivating Platform
	Globally-Synchronous Locally-Asynchronous (GALS) Architecture
	Problem Statement
	BAMSE Overview
	Task Selection
	Core Selection
	Mapping Selection
	Link Assignment
	Enhancements to the Baseline
	Fixed Mappings
	Empirical Validation
	Example: 802.11a Receiver
	Empirical Validation
	Parameter Space Exploration
	Future Work
	Questions?�������Thank you

