BAMSE: A Balanced Mapping Space Exploration Algorithm for GALS-based Manycore Platforms

Mohammad H Foroozannejad
Brent Bohnenstiehl
Soheil Ghiasi

Department of Electrical & Computer Engineering
University of California, Davis
Target Applications

- **Streaming**
 - Cell phones, mp3 players, video conference, data encryption, graphics, packet inspection, imaging, cellular base stations

- **Properties**
 - Infinite sequence of data items
 - At any given time, operates on a small window of this sequence

```
const R[3][3] = {
    {0.6, -0.8, 0.0},
    {0.8, 0.6, 0.0},
    {0.0, 0.0, 1.0}}

Rotation3D {
    for (i=0; i<3; i++)
        for (j=0; j<3; j++)
            B[i] += R[i][j] * A[j]
}
```
Trend in Processor Architecture

[Graph showing the trend in the number of cores over release years with labels for various processors such as Pentium4, Xeon, Core Duo, Core2 Quad, Power7, Xeon, UltraSPARC T3, Octeon2, SSC, AsAP2, Vega3, SEAforth, TILE-Gx, TILE64, picoChip 202, and Ambric 2045.]

[Hashemi’11]
Productive Programming of Many-Core Platforms

Mohammad H. Foroozannejad, Matin Hashemi, Trevor Hodges, Soheil Ghiasi
Electrical and Computer Engineering Department
University of California, Davis
http://leps.ece.ucdavis.edu

Formless: Application Parameter-Space Exploration
The application is defined as a set of "parameterized" actors and their connections. The tool automatically synthesizes a task graph that best fits the target hardware platform.

Task Graph Partitioning
The goal is to partition the task graph among processors. For example, in the graph below, we have 7 partitions marked by colors. As the primary goal, the algorithm tries to find the partition that results in the maximum overall throughput.

Memory Optimization
- Define the desired level of granularity for the analysis
- Analyze channel buffer requirements at the defined level
- Allocate the buffers in the shared memory space using genetic algorithm

Memory Saving Results [LCTES’10]:
- Left: Total savings compared to base-line
- Right: Trade off between optimality and complexity compared to lifetime analysis

List of Latest Publications

Mohammad H. Foroozannejad, Brent Bohnenstiehl, Soheil Ghiasi, "BAMSE: A Balanced Mapping Space Exploration Algorithm for Manycore Processors".

BAMSE: Balance Mapping Space Exploration
- Input: Virtual Processor Graph
- Nodes and edges represent processors and channels, respectively
- Objective: Mapping of virtual to physical resources
- Optimization Criteria:
 1. Minimize the longest communication link
 2. Minimize total communication distances
 3. Area
 4. Other application-dependent criteria

Relay Cost (KWS, WPS) = 11.254
Probability of Failure: 10^-12
Example Wireless LAN Rx on ASAP2
Comparison of BAMSE vs Manual
Motivating Platform

- Key Features
 - 164 Enhanced Programmable Processors
 - 3 Dedicated-purpose processors
 - 3 Shared memories
 - Long-distance circuit-switched communication network
 - Dynamic Voltage and Frequency Scaling (DVFS)

[Baas et al.’08]
Globally-Synchronous Locally-Asynchronous (GALS) Architecture

- The same clock used to supply the source processor is used for the communication
 - Long communication slows down the source processor regardless of the communication volume
- Static Link Allocation (limited resources)

![Graph showing Max Clock Frequency vs. Interconnect Distance]
Problem Statement

- Task graph G in which, the vertices model application tasks, and edges represent inter-task communication.
- The hardware graph H consists the set of available cores on the chip connected, and L, a subset of $C \times C$ representing inter-core links.
- **Objective**: An embedding of the task graph on the hardware graph
 - Improved application performance and energy dissipation
 - Graceful runtime-quality tradeoff (applicable to dynamic mapping)
BAMSE Overview

- Constructive Approach
- Task Selection
 - Tasks visited and handled in some order
- Core Selection
 - Candidate cores for allocating the task
 - Generate partial mappings and add to a queue
- Mapping Selection
 - Maintain a number of promising partial mappings
 - Avoid state explosion

- Balancing greediness (runtime) with mapping space coverage (quality) using a few parameters
- Priority-based multi objective cost function:
 - Longest Connection (LC)
 - Total number of Connections (TC)
 - Cores Bounding Box Area (A)
Task Selection

- Breath First Search
 - Unconstrained BFS
 - Maximum Distance to Children (MDC) = 4
 - Cuthill-McKee BFS
 - Children are sorted in increasing order of their degree (MDC = 3)
Core Selection

- Select cores that are close to the mapped connected tasks
 - **Intuition:** minimize the cost increase
 - Available cores are considered in batches, according to their contribution to the cost function
 - **Parameter:** Minimum number of Potential Cores (MPC)
 - Unavailable cores are removed from consideration

MPC = 1

MPC = 2
The following Partial Mappings are created after mapping node F. There are 12 mappings in the list with four different costs. An example partial mapping for each cost is shown.

- Generated partial mappings are added to a sorted list (based on cost).
- To avoid state explosion, the list is trimmed.
 - Parameter: Window Size (WS)

The following Partial Mappings are created after mapping node F. There are 12 mappings in the list with four different costs. An example partial mapping for each cost is shown.
Due to limited network resources, not all mappings yield feasible implementations.

Simultaneous mapping and link assignment

- A bookkeeping table keeps track of reserved interconnect resources.
Enhancements to the Baseline

○ Look-Ahead
 - Mapping some ‘future’ tasks to better sort the partial mapping list.
 - Helps to reduce the Window Size
 - Parameter: The Forwarding Number (FN). MDC can be heuristically used as FN to estimate the impact of all children of visited tasks.

○ Redundant Mapping Elimination
 - Based on mapping of tasks with connection to unmapped tasks, and the cost of partial mappings
Fixed Mappings

- Fixed mappings are dictated by the platform architecture (e.g., hardware accelerators) or programmers preference/insight
 - Handled naturally by prioritizing their ordering in Task Selection
Empirical Validation

<table>
<thead>
<tr>
<th>Application Name</th>
<th># Nodes</th>
<th># Edges</th>
<th>D</th>
<th>MDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viterbi Decoder</td>
<td>30</td>
<td>35</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>802.11a B.B. Rx.</td>
<td>25</td>
<td>40</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Small AES</td>
<td>59</td>
<td>79</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Large AES</td>
<td>137</td>
<td>176</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>H.264/AVC Encoder</td>
<td>115</td>
<td>165</td>
<td>7</td>
<td>24</td>
</tr>
</tbody>
</table>

D: Maximum undirected degree of the task graph
MDC: Maximum Distance to Children with Cuthill-McKee BFS

802.11a Broad Band Receiver Graph

[Tran’08]
Example: 802.11a Receiver

Manual Mapping

Longest Connection = 6
Total Connections = 59

BAMSE

Longest Connection = 3
Total Connection = 51

[Tran’08]
Empirical Validation

- **ILP*** number are obtained by terminating the solver after 10 days.
- **ILP**** are optimal, however, a smaller hardware graph (Mesh of 6X6 cores) is exposed to the solver to accelerate it.

<table>
<thead>
<tr>
<th>Application</th>
<th>LC</th>
<th>TC</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viterbi Decoder</td>
<td>Manual</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>BAMSE</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>ILP**</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>802.11a B.B. Rx.</td>
<td>Manual</td>
<td>6</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>BAMSE</td>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>ILP**</td>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td>Small AES</td>
<td>Manual</td>
<td>3</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>BAMSE</td>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>ILP*</td>
<td>3</td>
<td>105</td>
</tr>
<tr>
<td>Large AES</td>
<td>Manual</td>
<td>5</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>BAMSE</td>
<td>3</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>ILP*</td>
<td>5</td>
<td>328</td>
</tr>
<tr>
<td>H.264/AVC Encoder</td>
<td>Manual</td>
<td>17</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>BAMSE</td>
<td>6</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>ILP*</td>
<td>7</td>
<td>288</td>
</tr>
</tbody>
</table>
Parameter Space Exploration

Based on random sampling of the parameter space

Acceptance Threshold of Relative Cost:

0% (best result) → LC = 6, TC = 336
 # of acceptable mappings = 4

10% → LC = 6, TC = 356
 # of acceptable mappings = 10

50% → LC = 9, TC = 456
 # of acceptable mappings = 2150

Data from 2400 runs of
WS = 1 to 300 and MPC = 1 to 8
Future Work

- Automatic Parameter Tuning
 - Space too large for manual configuration

- Core-Task “suitability metric”:
 - Matching tasks with intensive workload to faster processors

- Dynamic Mapping
 - Launching and terminating applications
 - Incremental mapping
Questions?

Thank you