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Blg Data Era: from Teta (101) to Exa-scale (108)

* ‘Moore's’ Law: transistors double every 18 months
* 90% of today’s data was created in the last 2 years

— Facebook: 20TB/day compressed; NYSE: 1TB/day

* Many more: web logs, energy consumptions, medical
records, efc.

Youl3
Google

It IS not just a software game!



Cloud On-chip Server for Blg -data Processing
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More cores are
integrated on the same
chip for parallelism

Cores are scaled down
in size but with
maintained frequency
(2~4GHz) due to power
density

Performance is limited
by communication
efficiency between
cores and memories



2D Interconnect Scaling Slow-down

Transistor and Wire Delay Trend in CMOS
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1 H 1mm RC global wire

EEEEE

180nm 130nm 90nm 65nm 45nm 32Znm

O Repeated 1mm RC
global wire
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Technology Node

* Wire (L) latency not scaling down
— \Voltage signal charging/discharging of cap: RC-limited (~L?)
and reduced with repeater (~L)
— Scaling reduces delay of gate but not wire: latency is large
across chip
* Energy consumption not scaling down

— Supply voltage not scalable due to leakage



How can 3D Integration Help?
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Thermal Challenges in 3D

* High Power Density « Thermal-aware Design and

' Novel Cooling Techniques

Power density

10000

a). Power Control
— DVFS [Donald06]

— Load Scheduling and
Balancing [CoskunQ7]

—  Thermal-aware Floorplan
[Cong04]
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b). Cooling Control

Wce: mifte e e o — Thermal TSV  Insertion
[KimQ09]

 Long heat transfer path —  Microfluidic Cooling
for circuit layers that are [Dang05]

far away from heatsink



Need of 3D Thermal Simulator

A fast and accurate thermal simulator i1s needed for
3D thermal management

« Available Options:

Available Open Source
Simulator

Commercial Numerical
Simulator

General and accurate

Specific, moderately accurate

Long simulation time

Significant speedup

Subject to charges

Open source available

ANSYS, COMSOL

Hotspot, 3D-ICE

— Hotspot [Huang04]: lack of microfluidic cooling model.
— 3D-ICE [Sridhar10]: Ignorance of microchannel entrance effects

— Both Hotspot and 3D-ICE have not considered model specifically
TSV anisotropic thermal effect



Targeted Problem

« Model Dboth heat-sink-based air-cooling and
microfluidic cooling
e Layer composition:
— Back End of Lines (BEOL), Devices, and Bulk Sub-layers
« TSV anisotropic effect and microchannel entrance effect

O BEOL E Device EBulk B TIM B Spreader and Heatsink 1 Wall m® Channel



Modeling Methodology
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Heatsink-Cooled (Circuit Part Only) Microfluidic-Cooled

* Finite Element Analysis
— Divide 3D systems into grid cells
— Obtain the thermal conductance between each grid cell

« Steady State Analysis
— Setup thermal balanced equation for each cell

— Solve system equations simultaneous for whole thermal profile



TSV Device Fabrication

Photoresist

—

| — 1 [
Si substrate »
Interlayer
Bonding Pad f
Passivation
layer —_—
\ .
Handle wafer Al
(a) (b)
Ta/TaN/Au

Conductlve Paste

SRR

(d) (e)
Source: [Motoyoshi09]

»

CVD-SiO,

/
v

(c)

(f)

Back side lithography;
Deep Si-etch and SiO2
RIE;

SiO2 deposition and RIE;
Contact metal/barrier
metal deposition;

Paste printing;

Contact and barrier metal
removal.

- Typical Dimension: d . 5-
20 ym; d;: ~0.25 pm

- Typical Thermal: k.= 30
WI(mK); Koy = 400 W/(mK)
for Si;N, liner and Copper fill
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Significance of TSV Anisotropic Effect

« Metal TSV as filling material
- Good heat conductivity

« Silicon oxide as liner
- Thermal insulator with poor heat conductivity

TSV Anisotropic Effect: different heat conduction
properties along different direction
— Heat conductivity in 3D-1C depends on size and location

— Simple model with averaged heat conductivity may over-estimate
lateral conduction and fail to detect hotspots

— Fine-grained anisotropic TSV modeling is needed



Model of Anisotropic TSV Effect |

Heat Conduction in Solid

« With TSV inserted
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Model of Anisotropic TSV Effect Il

« Equivalent thermal conductivity of TSV

|

- Differ in different direction
- Liner tends to offset the high thermal conductivity in lateral
direction, but have less influence along vertical direction

2
Solid Grid Krsy xy = 1+ O (7 1) YKiiner
Cell ! (d. +2d,)(d +2dy)
T e @+ 9nC =D )
ISV TSV,z (dm +2d|)2 liner

7/ — kmetal/kliner
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Microchannel Device Fabrication

A direct etch and bond process for a 2-layer 3D-1C with microchannel

Wafer after
BEOL

Spin
photoresist

Photoresist
patterning

Typical Microchannel Width: 50-200 ym;
Typical Microchannel Height: 50-200 um;
Flow Speed: < 2.5m/s;

Pressure Drop: < 90 Kpa.

DRIE of
silicon

Strip
photoresist

Bond with
the other
wafer
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Significance of Microchannel Entrance Effect

« Entrance Effect: better thermo-conductivity properties
exhibited by laminar flow-fluid near inlet of microchannels
due to its developing velocity profile

— More effective thermal convection within entrance length
— Ignorance of entrance effect will cause serious deviation of thermal
profile

Entrance Region Fully Developed Region

[
-

A

Y

i

l
gl

|

|




Model of Microfluidic Entrance Effect |

 Convective conductance between channel wall and coolant
IS characterized by the heat transfer coefficient h

gconv — hA\:onv h = kf Nu / DH DH = 4A\ch / Pch
* Nusselt number Nu needs to be formulated separately for

the entrance region [Sedier36] and fully developed region
[Peng96] to count for entrance effect

Entrance Region Fully Developed Region
Ww 5“ — . —_—, —_—,
T >
1 \
D B
Nu,, = Nu, (Re: Pr)1’3(TH)’7 Nu,, =0. 1165( )081(W°h) O Re®? prt’?
ch

Nu = Nu, + Nu,



Model of Microfluidic Entrance Effect Il

* Nusselt number considering entrance effect
— High heat-transfer coefficient near inlet area
— Approach to a much lower constant value along flow direction

— Ignorance of entrance effect results in a constant heat-transfer
coefficient, and hence severes under-estimation of spatial thermal

gradient
Lk
Material: water
10 Q=0.6mi'min
Channel height="100um
al Channel width =100pm
Channel pitch =200um

MNusselt number

1 1 1 1 1 1
0 5 10 15 20 25 30
Distance from inlet of microchannel (mm)



Steady State Simulation under
Thermal Balance

« Thermal balance of every grid cell at steady state
Z(ﬂ _Ti,adj) ®Jiagj = R
» Heat transfers through microchannel cell by massive flow

Z Oenii (Teni = Ti) = (T — Teni) QG

je{walls}

e Sparse matrix equation is setup and solved by KLU [KLU]
GT=P



3D-ACME: Software Package

3D-ACME: 3D-IC thermal
simulator with  modeling
of Anisotropic
TSV  Conductance and
Microchannel Entrance
effects

— Implemented in C

— Released online at:
http://www.3dacme.allalla.com

Layer Configuration File

< Read Input File

TSV Setting

‘ Calculate Thermal Conductance

Construct G Matrix

Construct P Matrix

Solve by KLU

Power
Consumption
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Experiment Settings |

« Heatsink-cooled 2-layer 3D stack

1.8 m

BEOL Layer
Device Layer
Substrate Layer

TIM

200 pm

1 v

60 mm

20



Experiment Settings |l

« Microfluidic-Cooled 2-layer 3D stack

-

BEOL Layer

100 pwm

100 pm

Device Layer
Substrate Layer

Microchannel
Cooling Layer

Default flow-rate

9 ml/min

Coolant type

Water

100 pm

« Power Setting: uniform power density 50-250 W/cm?

21



Accuracy Study: Heat-sink Cooling
Comparison with COMSOL* and Hotspot 5.07

Maximum Temperature Minimum Temperature

Maximum Circuit Temperature (K)

Identical Result as Hotspot

Power Density (chmz)

* http://www.comsol.com

50 100 150 200 250
Power Density (chmz)

T http://lava.cs.virginia.edu/HotSpot/

» Identical Result as Hotspot
« Lessthan 1.2% error against « Error less than 1.1% against
COMSOL COMSOL
400 9350 I Ours
g0l i e EEE Il Hotspot 2300 Il Hotspot
e zommn BRI B S otspot
300N - BEE . EEN . EEE. B -]
6250 .......................................
25 ....................................... E‘
ﬁzoo .......................................
20 ........................................ st
§150 ........................................
15 .................................. 6
10 ......................................... 5100 ........................................
£
T | | W | [ W | ! AW | ( B | | g LTSRN | | o | EEm O RN | B | | (R
=
50 100 150 200 250 0
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Runtime Study
Comparison with COMSOL and Hotspot 5.0

e Setup: grid granularity is 16x16 with 2572 grid cells(16x16x10 sub-layers + 12
peripheral nodes of heat spreader and heat-sink)

« Up to 21x speedup against COMSOL and Hotspot
— Hotspot depends on power levels with more iterations
— Like COMSOL, runtime of our simulator only depends on problem size

— Much faster than COMSOL due to less number of grid nodes converged in
single-solving step

Simulator\
Power Density

COMSOL
Hotspot 0.763 1.019 1.187 131 1.41
Ours 0.068 0.068 0.059 0.061 0.066
Speedup 11x 15x 20X 21X 21X

runtime in unit of second
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Scalability Study
Comparison with Hotspot 5.0

» Hotspot: Logarithmic Scaling

— Advantage for large size problem with grid granularity in the form of 2"x2"
e Ours: Linear Scaling

— Advantage for small and medium size problem

— No restriction on grid division, which is necessary for non-squared chip-
modeling with microfluid-cooling

r |=w=Ours
=¢=Hotspot

L L L L L PR |
10° 10*

PR |
. 10°
Problem Size



Temperature Reduction by TSV Insertion
Comparison with COMSOL

e Three patterns of TSV as test * Compare reduction of
cases maximum temperature due to
U] TSV insertion
_  Pattern A o o o — Small deviation from COMSOL

— Acceptably accurate considering the

e 300K baseline temperature
Pattern\PD
COMSOL 0.4
oono
— Pattern B EEE A Ours 031 063 094 1.26 1.57

Emor 011 023 034 046 057
COMSOL 014 029 044 059 0.73
ous 018 036 053 071 0.89
— Pattern C olaalas Emor 004 007 009 012 0.16
COMSOL 012 024 036 048 0.60

& ous 016 031 047 063 078
Error 0.04 0.0/ 011 0.15 0.18




Maximum Temperature

50

Maximum Circuit Temperature (K)

Accuracy Study: Microfluidic Cooling

Comparison with COMSOL and 3D-ICE"

More accurate than 3D-ICE

Largest Error: Ours 0.5% vs 3D-ICE

4.3%

I ours
I 3D-ICE
Il comsoL

50 100 150 200

Power Density (chmz)

250

* http://esl.epfl.ch/3d-ice.html

Minimum Temperature

Much more accurate than 3D-ICE
Largest Error: Ours 1.1% vs 3D-ICE

Minimum Circuit Temperature (K)

o]
o
[—]

50

I ours
I 3D-ICE
Bl comsoL

50 100 150 200

Power Density (W,’cmz)

250
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Thermal Gradient Study
Comparison with COMSOL and 3D-ICE

* Correct thermal map iIs generated by our simulator 3D-
ACME

« A slanted thermal distribution is generated by 3D-ICE
with deviation from correct simulation

35 34
35: 31
349 3145
347.88 26.25
34! 21!
345.00 15.84

1

30

34
34,

- _ :
.32 3
3.
3
3
] 5

COMSOL 3D-ICE 3D-ACME




Conclusions

3D-ACME: http://www.3dacme.allalla.com

e Compact 3D-I1C thermal simulator considering both TSV
anisotropic thermal effect and microchannel entrance

effect

« Accurate estimation of steady state temperature for heat-
sink and microfluidic-cooled 3D-I1C

— Compared to Hotspot: similar accuracy, shorter runtime at moderate
granularity, but with capability of TSV and microfluidic modeling.

— Compared to 3D-ICE: much more accurate steady state simulation
with capability of TSV anisotropic thermal modeling
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