

Thermal Simulator of 3D-IC with Modeling of Anisotropic TSV Conductance and Microchannel Entrance Effects

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore Hanhua Qian, Hao Liang, Chip-Hong Chang, Wei Zhang and Hao Yu

Big Data Era: from Teta (10¹⁵) to Exa-scale (10¹⁸)

- 'Moore's' Law: transistors double every 18 months
- 90% of today's data was created in the last 2 years
 Facebook: 20TB/day compressed; NYSE: 1TB/day
- Many more: web logs, energy consumptions, medical records, etc.

It is not just a software game!

Cloud On-chip Server for Big-data Processing

- More cores are integrated on the same chip for parallelism
 - Cores are scaled down in size but with maintained frequency (2~4GHz) due to power density

Performance is limited by communication efficiency between cores and memories

2D Interconnect Scaling Slow-down

- Wire (L) latency not scaling down
 - Voltage signal charging/discharging of cap: RC-limited (~L²) and reduced with repeater (~L)
 - Scaling reduces delay of gate but not wire: latency is large across chip
- Energy consumption not scaling down
 - Supply voltage not scalable due to leakage

How can 3D Integration Help?

- Vertical structured I/Os for memory-logic interconnection with significant interconnect latency reduction
- Heterogeneous integration for emerging technologies with more knobs of power and thermal management

Thermal Challenges in 3D

High Power Density Power density 10000 [W/cm²] 1000

• Long heat transfer path for circuit layers that are far away from heatsink

- Thermal-aware Design and Novel Cooling Techniques
 - a). Power Control
 - DVFS [Donald06]
 - Load Scheduling and Balancing [Coskun07]
 - Thermal-aware Floorplan [Cong04]
 - b). Cooling Control
 - Thermal TSV Insertion [Kim09]
 - Microfluidic
 [Dang05]

Cooling

Need of 3D Thermal Simulator

- A fast and accurate thermal simulator is needed for 3D thermal management
- Available Options:

Commercial Numerical Simulator	Available Open Source Simulator		
General and accurate	Specific, moderately accurate		
Long simulation time	Significant speedup		
Subject to charges	Open source available		
ANSYS, COMSOL	Hotspot, 3D-ICE		

- Hotspot [Huang04]: lack of microfluidic cooling model.
- 3D-ICE [Sridhar10]: Ignorance of microchannel entrance effects
- Both Hotspot and 3D-ICE have not considered model specifically TSV anisotropic thermal effect

Targeted Problem

- Model both heat-sink-based air-cooling and microfluidic cooling
- Layer composition:
 - Back End of Lines (BEOL), Devices, and Bulk Sub-layers
- TSV anisotropic effect and microchannel entrance effect

Modeling Methodology

• Finite Element Analysis

- Divide 3D systems into grid cells
- Obtain the thermal conductance between each grid cell
- Steady State Analysis
 - Setup thermal balanced equation for each cell
 - Solve system equations simultaneous for whole thermal profile

TSV Device Fabrication

- Back side lithography;
- Deep Si-etch and SiO2 RIE;
- SiO2 deposition and RIE;
- Contact metal/barrier metal deposition;
- Paste printing;
 - Contact and barrier metal removal.

- **Typical Dimension**: d_m : 5-20 µm; d_l : ~0.25 µm - **Typical Thermal**: k_{liner} = 30 W/(mK); k_{metal} = 400 W/(mK) for Si₃N₄ liner and Copper fill

Source: [Motoyoshi09]

Significance of TSV Anisotropic Effect

- Metal TSV as filling material
 - Good heat conductivity
- Silicon oxide as liner
 - Thermal insulator with poor heat conductivity
- TSV Anisotropic Effect: different heat conduction properties along different direction
 - Heat conductivity in 3D-IC depends on size and location
 - Simple model with averaged heat conductivity may over-estimate lateral conduction and fail to detect hotspots
 - Fine-grained anisotropic TSV modeling is needed

Model of Anisotropic TSV Effect I

Heat Conduction in Solid

• With TSV inserted

$$g_{x} = (1 + \frac{wh(\beta - 1)}{WH(1 + (1 - w/W)(\beta - 1))})g_{x0}$$

$$g_{y} = (1 + \frac{wh(\beta - 1)}{WH(1 + (1 - h/zh)(\beta - 1))})g_{y0}$$

$$g_{z} = (1 + \frac{wh(\beta - 1)}{WH})g_{z0}$$

 g_{x0} , g_{y0} and g_{x0} : thermal conductance of grid cell without TSV

 β : ratio between thermal conductivity of TSV and grid cell (k_{TSV}/k_{cell})

Model of Anisotropic TSV Effect II

• Equivalent thermal conductivity of TSV

- Differ in different direction

- Liner tends to offset the high thermal conductivity in lateral direction, but have less influence along vertical direction

Microchannel Device Fabrication

A direct etch and bond process for a 2-layer 3D-IC with microchannel

Typical Microchannel Width: 50-200 μm; **Typical Microchannel Height:** 50-200 μm; **Flow Speed:** < 2.5m/s; **Pressure Drop:** < 90 Kpa.

Significance of Microchannel Entrance Effect

- Entrance Effect: better thermo-conductivity properties exhibited by laminar flow-fluid near inlet of microchannels due to its developing velocity profile
 - More effective thermal convection within entrance length
 - Ignorance of entrance effect will cause serious deviation of thermal profile

Model of Microfluidic Entrance Effect I

• Convective conductance between channel wall and coolant is characterized by the heat transfer coefficient *h*

$$g_{conv} = hA_{conv}$$
 $h = k_f Nu / D_H$ $D_H = 4A_{ch} / P_{ch}$

• Nusselt number *Nu* needs to be formulated separately for the entrance region [Sedier36] and fully developed region [Peng96] to count for entrance effect

Model of Microfluidic Entrance Effect II

• Nusselt number considering entrance effect

- High heat-transfer coefficient near inlet area
- Approach to a much lower constant value along flow direction
- Ignorance of entrance effect results in a constant heat-transfer coefficient, and hence severes under-estimation of spatial thermal gradient

Steady State Simulation under Thermal Balance

• Thermal balance of every grid cell at steady state

$$\sum (T_i - T_{i,adj}) \bullet g_{i,adj} = P_i$$

• Heat transfers through microchannel cell by massive flow

$$\sum_{j \in \{walls\}} g_{ch,i,j} (T_{ch,i} - T_j) = (T_{ch,i} - T_{ch,i-1}) QC_V$$

• Sparse matrix equation is setup and solved by KLU [KLU]

GT = P

3D-ACME: Software Package

- **3D-ACME: 3D-**IC thermal simulator with modeling of Anisotropic
 TSV Conductance and Microchannel Entrance effects
 - Implemented in C
 - Released online at: http://www.3dacme.allalla.com

Experiment Settings I

• Heatsink-cooled 2-layer 3D stack

Experiment Settings II

Microfluidic-Cooled 2-layer 3D stack

• **Power Setting:** uniform power density 50-250 W/cm²

Accuracy Study: Heat-sink Cooling Comparison with COMSOL* and Hotspot 5.0⁺

Maximum Temperature

- Identical Result as Hotspot
- Less than 1.2% error against COMSOL

Minimum Temperature

- Identical Result as Hotspot
- Error less than 1.1% against COMSOL

* http://www.comsol.com

† http://lava.cs.virginia.edu/HotSpot/

Runtime Study Comparison with COMSOL and Hotspot 5.0

- **Setup:** grid granularity is 16x16 with 2572 grid cells(16x16x10 sub-layers + 12 peripheral nodes of heat spreader and heat-sink)
- Up to 21x speedup against COMSOL and Hotspot
 - Hotspot depends on power levels with more iterations
 - Like COMSOL, runtime of our simulator only depends on problem size
 - Much faster than COMSOL due to less number of grid nodes converged in single-solving step

Simulator\ Power Density	50	100	150	200	250
COMSOL	42	42	42	42	42
Hotspot	0.763	1.019	1.187	1.31	1.41
Ours	0.068	0.068	0.059	0.061	0.066
Speedup	11x	15x	20x	21x	21x

runtime in unit of second

Scalability Study Comparison with Hotspot 5.0

- Hotspot: Logarithmic Scaling
 - Advantage for large size problem with grid granularity in the form of $2^n x 2^n$
- Ours: Linear Scaling
 - Advantage for small and medium size problem
 - No restriction on grid division, which is necessary for non-squared chipmodeling with microfluid-cooling

Temperature Reduction by TSV Insertion Comparison with COMSOL

- Three patterns of TSV as test cases
 - Pattern A

– Pattern B

- ComparereductionofmaximumtemperatureduetoTSV insertiontemperaturetemperature
 - Small deviation from COMSOL
 - Acceptably accurate considering the 300K baseline temperature

Pa	attern\PD	50	100	150	200	250
A	COMSOL	0.2	0.4	0.6	0.8	1
	Ours	0.31	0.63	0.94	1.26	1.57
	Error	0.11	0.23	0.34	0.46	0.57
B	COMSOL	0.14	0.29	0.44	0.59	0.73
	Ours	0.18	0.36	0.53	0.71	0.89
	Error	0.04	0.07	0.09	0.12	0.16
С	COMSOL	0.12	0.24	0.36	0.48	0.60
	Ours	0.16	0.31	0.47	0.63	0.78
	Error	0.04	0.07	0.11	0.15	0.18

Accuracy Study: Microfluidic Cooling Comparison with COMSOL and 3D-ICE*

Maximum Temperature

- More accurate than 3D-ICE
- Largest Error: Ours 0.5% vs 3D-ICE
 4.3%

Minimum Temperature

- Much more accurate than 3D-ICE
- Largest Error: Ours 1.1% vs 3D-ICE
 20.2%

* http://esl.epfl.ch/3d-ice.html

Thermal Gradient Study Comparison with COMSOL and 3D-ICE

- Correct thermal map is generated by our simulator 3D-ACME
- A slanted thermal distribution is generated by 3D-ICE with deviation from correct simulation

Conclusions

3D-ACME: <u>http://www.3dacme.allalla.com</u>

- Compact 3D-IC thermal simulator considering both TSV anisotropic thermal effect and microchannel entrance effect
- Accurate estimation of steady state temperature for heatsink and microfluidic-cooled 3D-IC
 - Compared to Hotspot: similar accuracy, shorter runtime at moderate granularity, but with capability of TSV and microfluidic modeling.
 - Compared to 3D-ICE: much more accurate steady state simulation with capability of TSV anisotropic thermal modeling