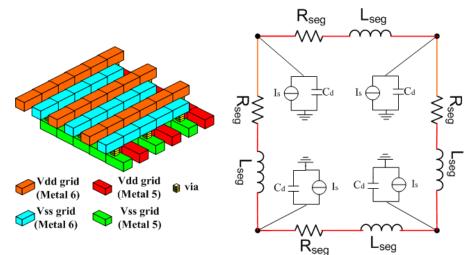
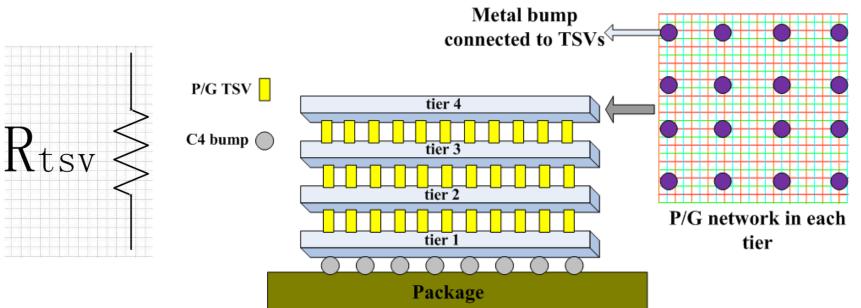
HS3DPG: Hierarchical Simulation for 3D P/G Network


Shuai Tao, Xiaoming Chen, Yu Wang, Yuchun Ma, Yiyu Shi , Hui Wang, Huazhong Yang

Presented by Shuai Tao (Tsinghua University, Beijing,China) January 24, 2013, ASP-DAC in Japan

- Background
- Motivation
- HS3DPG
 - Overview of the hierarchical simulation flow
 - Port equivalent model
 - Simplified model
- Experimental Results
- Conclusions


P/G network simulation problems

- P/G networks have become more and more critical in the chip design flow.
 - 5% IR drop can lead to 15% or more performance degradation [J._S Yim, ACM Des.Autom. Conf, 99]
- The analysis of P/G networks is a very computationally challenging task.
 - Millions of P/G nodes in chips nowadays.
 - Difficult to divide for the most common mesh-based P/G networks

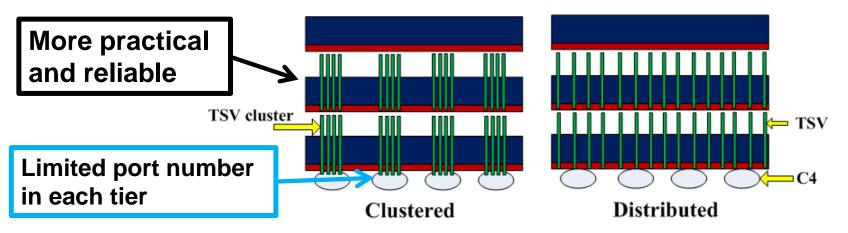
3D P/G network

- With the feature size shrinking, three-dimensional (3D) integration has been regarded as a promising solution to mitigate bottlenecks faced by the traditional 2D integration.
 - Interconnect delay (15% wirelength reduction for 3 tiers [J. Cong, 08]), leakage power et al
- The power supply system of 3D ICs.

Related work

- The time domain analysis of the P/G network can be divided into two categories: static IR drop analysis and transient simulation. This paper focuses on the former one.
- There are many studies on the modeling and fast analysis in 2D P/G networks, while only a few work in 3D.
- 2D P/G network simulation
 - Some Multigrid-based approaches:
 - AMG-PCG [J.Yang, ICCAD11], CPU-GPU HMD [Z. Feng, TVLSI11] and multigrid-like techniques [J. Kozhaya, TCAD02].
 - Hierarchical analysis [M. Zhao, TCAD02]:
 - Divide and conquer

Related work_3D P/G network


- Much tougher situation in the 3D case
 - The network scale may be several times larger than that of 2D cases.
- 3D P/G network simulation
 - Compact physical model [G. Huang, EPEP07]
 - Model order reduction [H. Yu, TDAES09]
 - Both above regarded the 3D power system as a whole.
- Standard reduced power models (SRPM) based approach. [X. Hu, 3DIC 10]

- Background
- Motivation
- HS3DPG
 - Overview of the hierarchical simulation flow
 - Port equivalent model
 - Simplified model
- Experimental Results
- Conclusions

Why hierarchical simulation in 3D?

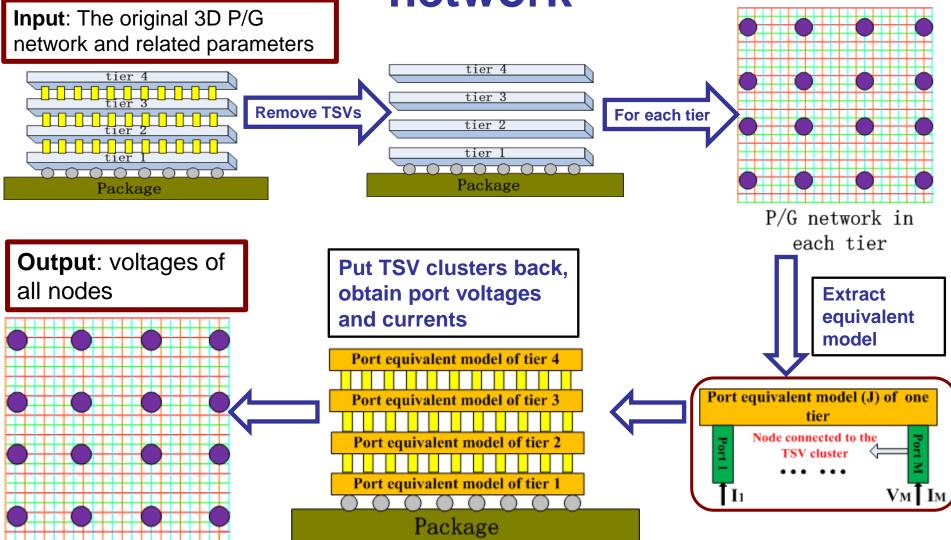
The inherent hierarchical nature of 3D P/G network

- Port number problem also exists
- Clustered TSV location makes it more suitable to use hierarchical approach.
 - Two ways of P/G TSV location in 3D chips. [M. B. Healy, TVLSI11]

Moreover, the "locality" property can also help solve the port number problem and simplify the simulation in 3D.

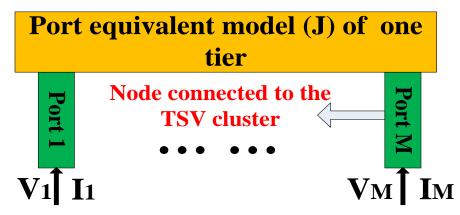
- Background
- Motivation
- HS3DPG
 - Overview of the hierarchical simulation flow
 - Port equivalent model
 - Simplified model
- Experimental Results
- Conclusions

Hierarchical simulation flow for 3D P/G network


- P/G network Analysis based on MNA
 - G is sparse and SPD (solved by CHOLMOD [Y.Chen 08] in this paper)

$$Gx = I, G \in \mathbb{R}^{N \times N}, x \in \mathbb{R}^{N \times 1}, I \in \mathbb{R}^{N \times 1}$$

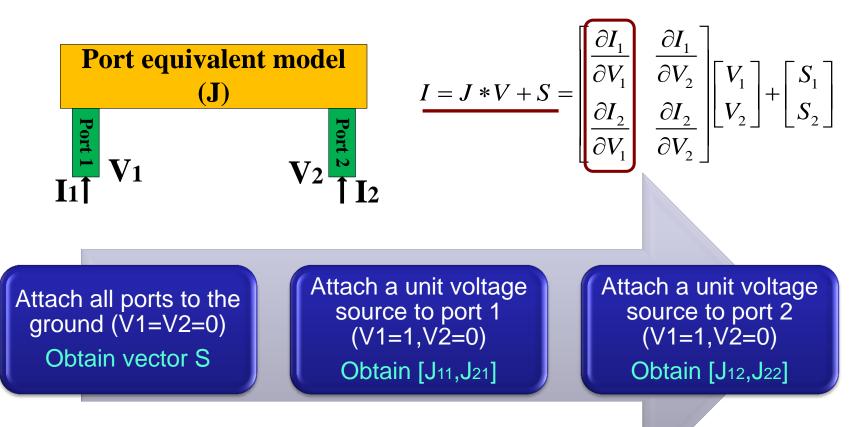
Objectives


- Static IR drop analysis : Obtain voltages of each node in the network
- Deal with each tier separately: In order to achieve benefits from parallelism.
- **Approach:** Extract a port equivalent model for each tier

Hierarchical simulation flow for 3D P/G network

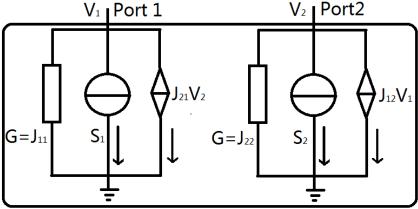
Port equivalent model _definition

Definition of the Port, V and I



The port equivalent model should maintain the same port characteristics as the original network.

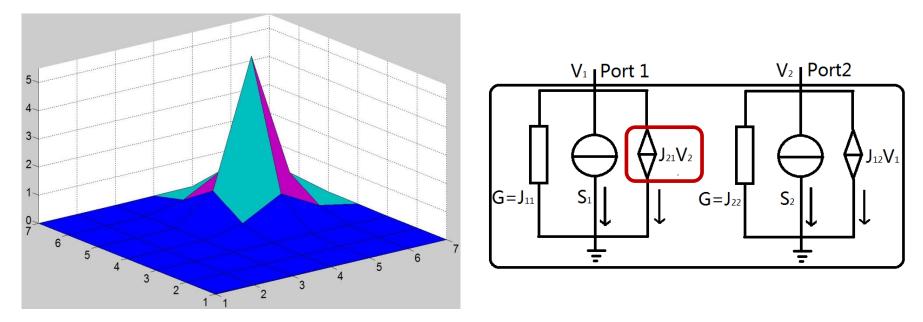
$$I = J * V + S = \begin{bmatrix} \frac{\partial I_1}{\partial V_1} & \cdots & \frac{\partial I_1}{\partial V_M} \\ \vdots & \ddots & \vdots \\ \frac{\partial I_M}{\partial V_1} & \cdots & \frac{\partial I_M}{\partial V_M} \end{bmatrix} \begin{bmatrix} V_1 \\ \vdots \\ V_M \end{bmatrix} + \begin{bmatrix} S_1 \\ \vdots \\ S_M \end{bmatrix}$$


Port equivalent model _ computation

We take 2 ports for example to show how to compute the port equivalent model.
Is the state of the s

Port equivalent model_ circuit representation

 Circuit representation of one tier after using port equivalent model.



Benefits

- The port equivalent model of each tier can be computed in parallel.
- Mask details of the P/G network inside to avoid the conflict between data sharing and chip protection in 3D ICs.
- Potential to be also used in the transient simulation.

"Locality" property and simplified model

"Locality" property in the flip-chip packaging.

 With "locality", the Jacobi matrix J in the port equivalent model can be **quite sparse.** Accordingly, **the number of** VCCS in the equivalent circuit can **be reduced** dramatically.

Sparsity of the Jacobi matrix in the simplified models

 Sparsity of the Jacobi matrix increases in simplified models when we take "locality" property into consideration.

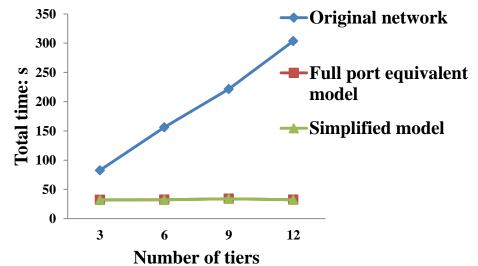
TSV cluster array in each tier	Sparsity in full port equivalent models	Sparsity in simplifed models		
10x10	1.00	0.49		
13x13	1.00	0.33		
20x20	1.00	0.16		
25x25	0.9997	0.1076		
48x48	0.62	0.032		

 With the "locality" effect in consideration, non-zero elements of the Jacobi matrix in simplified models can be only 5% of that in the full port equivalent model. (48x48 TSVs)

- Background
- Motivation
- HS3DPG
 - Overview of the hierarchical simulation flow
 - Port equivalent model
 - Simplified model
- Experimental Results
- Conclusions

Verification of the proposed approach

Results on a 3D P/G benchmark from industrial design

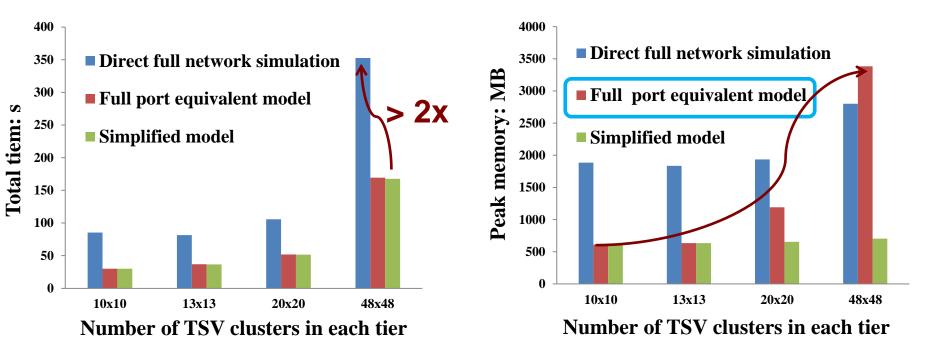

3D_µP, vdd 1.8V, 831184 P/G nodes, 2 tiers, 2x2 TSV clusters

	Time (s)			Memory (KB)		
3D_µP	Compute equivalent models	Simulate the global network	Total time	Compute equivalent models	Simulate the global network	Peak memory
Direct full network simulation	0	1.420	1.420	0	143956	143956
Hierarchical approach	0.747	0.005	0.752	72050	8500	72050

- 1.9x acceleration in speed and save nearly 2x memory
- The accuracy of the hierarchical simulation can also be well maintained (maximum absolute error around 10^-12)

Scalability with the number of tiers

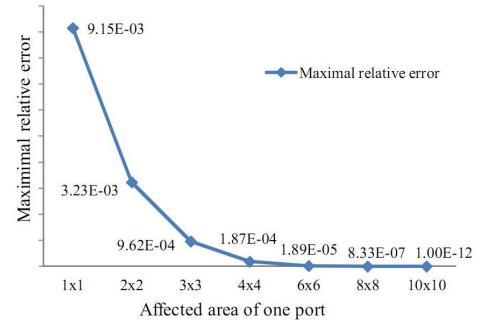
- When the number of tiers increase, the simulation results are as follows
 - Each tier: 1M P/G nodes and 10x10 TSV clusters.



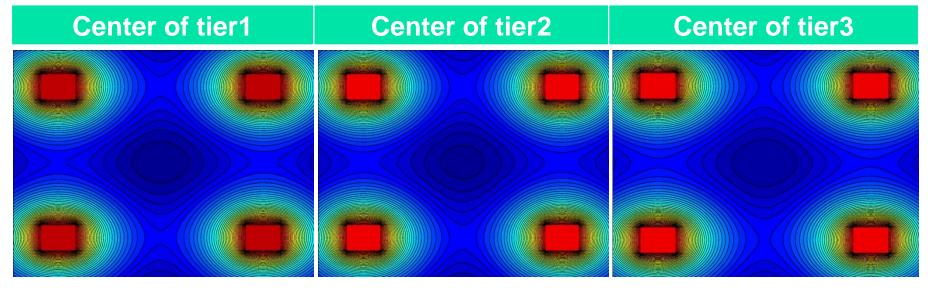
 HS3DPG can ensure a good scalability with the increase of tier number and gain more benefits when the tier number becomes larger (9 tiers, 6.5 times faster)

Performance comparison when the TSV cluster number increases

Peak memory


Total time

 Simplified models have much smaller number of VCCSs because we omit most of the port dependencies, which brings much lower memory allocation.


Accuracy analysis of the simplified model

The maximal relative error of port voltages changes along with the affected area of one port.

 Users should make a balance between the accuracy and the simulation complexity

Voltage Distribution of a clustered TSV based 3D P/G network

0.77V~0.8V

- IR-drop in the vertical direction along TSVs is small in the clustered architecture. Nodes connected to TSV clusters always have the maximum voltage in each tier.
- Particular attention to the power supply on top tiers in the 3D chip design is needed.

- Background
- Motivation
- HS3DPG
 - Overview of the hierarchical simulation flow
 - Port equivalent model
 - Simplified model
- Experimental Results
- Conclusions

Conclusions

- We propose a hierarchical simulation method suitable for 3D P/G network (HS3DPG).
 - The proposed method firstly separates different tiers from the global network and then extracts the port equivalent models in parallel.
 - To further simplify the port equivalent model, we introduce the "locality" property into the 3D P/G network simulation.
 - Experimental results have proven the accuracy and scalability of our method.
- We use HS3DPG to analyze the voltage distribution map of a clustered TSV based 3D P/G network and some related features are concluded.

Thanks! Q&A