.
V.Y FIXSTARS

Speed up your Business

Support Tools for Porting Legacy
Applications to Multicore

Natsuki Kawai, Yuri Ardila,
Takashi Nakamura, Yosuke Tamura

v Agenda

= Introduction

= PEMAP: Performance Estimator for MAny core
Processors
v' The overview of PEMAP
v Estimation Methods
v Demonstration of PEMAP

= BEMAP: BEnchMarks for Automatic Parallelization
v' The overview of BEMAP
v Optimization Methods
v BEMAP as a benchmark for PEMAP
v BEMAP as a standalone benchmark

wwIntroduction

=2 1In the first step of software parallelization,
we need to estimate performance benefit of
parallelization

= Also, this performance estimator needs a
benchmark to examine its performance
liability

=2>We propose two development tools for them

v PEMAP: Performance Estimator for MAny core
Processors

v BEMAP: BEnchMark for Automatic
Parallelization

.vPEMAP:

Performance Estimator for
MAnNy-core Processors

—yOverview

= PEMAP estimates performance benefits of
parallelization of existing sequential programs
v Without any parallel programming

= Users have to insert two annotations to target
sequential programs

void abs (float *d)
{
int 1i;
PEMAP LOOP_ START;
for (i = 0; i < 1000000, i++) {
d[i] = d[i] >= 0.0 ? d[i] : -d[i]:
}
PEMAP LOOP END;

wvIdea

= Performance of GPU programs is strongly depends
on their calculation costs and memory accesses.

= We propose to reconstruct them on GPU by existing
methods of loop analysis.

v PEMAP does NOT analyze inter-loop data
dependency because it is not important for
performance estimation

Reference: www.nvidia.com

vEstimating Processes

=>» The first annotation calls [Target } [PEMAP J
Program SharedLib
PEMAP ‘, ‘, ser's
] Insert Annotation & Link
-> PEMAP statically analyzes I Work
Target Program
the ta I’get [(Annotated) }
4/_/\4 N
9 RunS the ta rget Static Analysis Run on Sequential Computer
v To collect actualbranch _ ,» . ,
directions and memor{/ PEMAPIR | | Loranch } E"em;;{tﬁrffesﬂ
access patterns : v >Automated
Emit CUDA code P
= Generates a dummy , rOBESS
Dummy Program
program [(cUDA J
v It has virtuaIIy Same Run on Parallel Computer

performance as a ,
hand-parallelized { Performance J

Estimation
prog ram 6

+The analyzing method

1. Create graphs from the
target programs by existing ['”““““"E“} [}

loop-analyzing methods [ﬁﬁﬂ? mgia;g

2. Pick up memory accesses “T T
comassoch

and condition branches [l:oj
constant0 03
collect =0 [oadd

3. Traverse the graphs to [condo } [nsnt]
generate dummy CUDA t[
programs

select(
>

storeQ

+The analyzing method

1. Create graphs from the
target programs by existing ['”““““"E“} [}

loop-analyzing methods [ﬁﬁﬂ? mgia;g

2. Pick up memory accesses ~— T

-
and condition branches [Loj [mmﬂ
constantO
collect 20

3. Traverse the graphs to
generate dummy CUDA
programs

storeQ

~vEvaluation

= We selected Black-Scholes and Grayscale
benchmarks from BEMAP

v Estimated the performance of sequential samples

in BEMAP
v Ported OpenCL samples in BEMAP to CUDA
Black-Scholes Benchmark Grayscale Benchmark
400 200
350 180 -
E 300 - E 160
= =140
£ 250 £ 120
: 200 m Estimation : 100 ® Estimation
o)
B 150 - = BEMAP g 80 = BEMAP
2 100 - g ©
i i 40 -
50 - 20 -
0 - 0 -
Tesla C1060 Geforce GTXGeforce GTX Tesla C1060 Geforce Geforce

570 680 GTX 570 GTX 680

~vUser Interface

F My . Ferrvrimmairive EQUIrriaiewr Ve ey were mrevywvweaeawvr o

Cloud PEMAP Front Page

Cloud PEMAP is a web service version of a performance estimation tool PEMAP.

Language:
oG
o C++

Device:
Quadro FX 3700

AT DL RS e DY LIS L LRI T Ly e L LR R LRI e LI i Tty
const int w)
float rr, gg, bb
float v;
int i, J;

Copyright 2013 Fixstars Corporation. Fixstars and the Fixstars logo are registered trademarks of Fixstars.

m

10

~vUser Interface

FENEAF. FCrrorrraricc CSthuriator ror MesMrty corec rrocessors

Cloud PEMAP Result

PEMAP succeeded to estimate the performance of your program. Please confirm the result table and PEMAP-
result below.

You always can access this result from http://localhost:4567/68/.

Return to the top—page of Cloud PEMAP to estimate your next program.

The result of estimation

GPU # threads exec time
CPU 114.958791318000001ms
Quadro FX 3700 32 2.024175ms

The output of PEMAP (including output of your program before PEMAP was called)

num all reg arg: 15

loadd: 0

loadl: 1

loadZ?: 2

storel: 0

load0 is NOT a random access.
loadl is NOT a random access.
load? is NOT a random access.
storel is NOT a random access.
tmpxft 00001dc0_00000000-14 dummy. ii
Target GPU: Quadro FX 3700

nitr=1 nthread=82 o 2.024175 [msec

N [y | O T | | '] el R |

»

m

Ty =

11

~vBEMAP:
BEnchMark for Auto Parallelizer

12

i.v Background

aims to :

v measure an auto-parallelizer tool’s performance
and liability

v provide a simple interface to conduct a comparison
between reference code and parallelized code

v provide a multi-platform benchmark using the
OpenCL framework

13

vy Overview

= A benchmark for parallelizer consisting of reference
(single thread) codes and hand-tuned (parallel)
OpenCL codes

=» An open-source project, can be downloaded from:
v http:/ /sourceforge.net/projects/bemap/

=» Currently consists of 8 algorithms:

Black-Scholes for European Option
Gaussian Blur

Grayscale

Linear Search

Monte-Carlo for European Option
Runlength Encoding

Backprojection

Scale Invariant Feature Transform (SIFT)

NS N N N N S NI

14

http://sourceforge.net/projects/bemap/
http://sourceforge.net/projects/bemap/

iy Overview (cont.)

=» Has well-optimized OpenCL kernel codes

v Both platform independent and platform
dependent OpenCL kernels are provided

=» Optimization methods and benchmark results are
well-documented

v http://sourceforge.net/projects/bemap/files/Documentations/

15

v Overview (cont.)

A
BEMAP 0101110
OpenCL ETEE 1101010
Hand-tuned Compiler Program [UTIEEG
Program 1011101

® Speed Comparison
® OQOutput Comparison

N
BEMAP 0101110
S tial Auto - Parallel ppsliGly
equentia Parallelizer Program 0101110
Program 1011101

) €

16

iy Optimization Methods

= SIMD (explicit vectorization)

v" Force the compiler to use wide registers to do a single operation for
multiple data (e.g. Intel’s [X| Y]MM registers)

= Simple loop-unrolling
= Memory Access
v' Coalesced, Back-conflicted, Random

=» Caching with shared memory

v Programmable cache may boost up the memory transfer
performance (DMA architecture)

= Memory Mapping

v Mapped (Pinned) memory gives asynchronous memory access for
the host-device communication

=» Native Math Functions
v Built-in math functions are provided in some platforms

17

-+ BEMAP as a benchmark for PEMAP

BEMAP

Hand-tuned
Program

BEMAP

Sequential
Program

OpenCL
Compiler

Insert
PEMAP’s
annotations

Compiler

©

Parallel
Program

Parallel
Program

0101110\\

1101010
0101110
1011101

® Speed Comparison
® Output Comparison

0101110\\

1101010
0101110
1011101

18

-+ BEMAP as a standalone benchmark

Time unit is milliseconds (ms), using BEMAP’s default parameters

Workload Ref CPUOCL | GPUOCL Ref CPUOCL | GPUOCL
Platl Platl1 Platl Plat2 Plat2 Plat2

BlackScholes 6109.07 32.05 1587.80 21.41
Gaussian 227.42 1.24 0.39 179.30 1.40 0.27
Grayscale 4.32 0.53 0.06 5.47 0.52 0.07
LinearSearch 26.25 8.42 47.14 33.33 14.24 24.08
MonteCarlo 193817.4 696.53 49.68 27423.70 264.49 41.50
Runlength 518.28 17.07 90.29 370.50 16.77 43.36
Backprojection 11297.43 195.03 75.83 11872.04 116.08 69.70
SIFT 1860.00 194.11 55.54 1452.00 170.51 48.02
RefPlatl & CPUOCLPIlat1: RefPlat2 & CPUOCLPIat2:
Intel i7-X990 @ 3.47GHz (Nehalem) Intel Core i7-3770K @ 3.50GHz (Ivy Bridge)
8GB memory, 6 cores, 12 threads (HT) 8GB memory, 4 cores, 8 threads (HT)
GPUOCLPIat1: GPUOCLPIlat2:

NVIDIAGTX 570 @ 1.46GHz (Fermi GF-110) NVIDIA GTX 680 @ 1.06 GHz (Kepler GK-104)
480 CUDA cores, 1.2GB GDDR5 memory 1536 CUDA cores, 2GB GDDR5 memory 19

~vConclusion

=>We proposed two development tools for
parallelization.

= PEMAP is an estimation tool of performance
increase through parallelization.

v"Users of PEMAP need to do nothing other than
inserting two annotations.

= BEMAP is a benchmark suite to assist the
development of an auto-parallelizer

20

