
Support Tools for Porting Legacy
Applications to Multicore

Natsuki Kawai, Yuri Ardila,

Takashi Nakamura, Yosuke Tamura

 Agenda

Introduction

PEMAP: Performance Estimator for MAny core

Processors

The overview of PEMAP

Estimation Methods

Demonstration of PEMAP

BEMAP: BEnchMarks for Automatic Parallelization

The overview of BEMAP

Optimization Methods

BEMAP as a benchmark for PEMAP

BEMAP as a standalone benchmark

1

Introduction

In the first step of software parallelization,

we need to estimate performance benefit of

parallelization

Also, this performance estimator needs a

benchmark to examine its performance

liability

We propose two development tools for them

PEMAP: Performance Estimator for MAny core

Processors

BEMAP: BEnchMark for Automatic

Parallelization

2

PEMAP:
 Performance Estimator for

 MAny-core Processors

3

Overview

PEMAP estimates performance benefits of

parallelization of existing sequential programs

 Without any parallel programming

Users have to insert two annotations to target

sequential programs

void abs(float *d)

{

 int i;

 PEMAP_LOOP_START;

 for (i = 0; i < 1000000; i++) {

 d[i] = d[i] >= 0.0 ? d[i] : -d[i];

 }

 PEMAP_LOOP_END;

}

4

Idea

Performance of GPU programs is strongly depends

on their calculation costs and memory accesses.

We propose to reconstruct them on GPU by existing

methods of loop analysis.

PEMAP does NOT analyze inter-loop data

dependency because it is not important for

performance estimation

 Reference: www.nvidia.com
5

Target Program

(Annotated)

Target

Program

PEMAP

SharedLib

PEMAP IR
Branch

Direction

Memory Access

Pattern

Dummy Program

(CUDA)

Performance

Estimation

Insert Annotation & Link

Run on Sequential Computer Static Analysis

Emit CUDA code

Run on Parallel Computer

User's

Work

Automated

Process

Estimating Processes

The first annotation calls

PEMAP

PEMAP statically analyzes

the target

Runs the target

 To collect actual branch

directions and memory

access patterns

Generates a dummy

program

 It has virtually same

performance as a

hand-parallelized

program

6

The analyzing method

1. Create graphs from the

target programs by existing

loop-analyzing methods

2. Pick up memory accesses

and condition branches to

collect

3. Traverse the graphs to

generate dummy CUDA

programs

7

The analyzing method

1. Create graphs from the

target programs by existing

loop-analyzing methods

2. Pick up memory accesses

and condition branches to

collect

3. Traverse the graphs to

generate dummy CUDA

programs

8

Evaluation

We selected Black-Scholes and Grayscale

benchmarks from BEMAP

Estimated the performance of sequential samples

in BEMAP

Ported OpenCL samples in BEMAP to CUDA

0

50

100

150

200

250

300

350

400

Tesla C1060Geforce GTX

570

Geforce GTX

680

E
x
e
c
u

ti
o
n

 t
im

e
 [
μ
s
]

Black-Scholes Benchmark

Estimation

BEMAP

0

20

40

60

80

100

120

140

160

180

200

Tesla C1060 Geforce

GTX 570

Geforce

GTX 680

E
x
e
c
u

ti
o

n
 t

im
e
 [
μ

s
]

Grayscale Benchmark

Estimation

BEMAP

9

User Interface

10

User Interface

11

BEMAP:
 BEnchMark for Auto Parallelizer

12

 Background

aims to :

measure an auto-parallelizer tool’s performance

and liability

provide a simple interface to conduct a comparison

between reference code and parallelized code

provide a multi-platform benchmark using the

OpenCL framework

13

 Overview

 A benchmark for parallelizer consisting of reference

(single thread) codes and hand-tuned (parallel)

OpenCL codes

 An open-source project, can be downloaded from:

http://sourceforge.net/projects/bemap/

 Currently consists of 8 algorithms:
 Black-Scholes for European Option

 Gaussian Blur

 Grayscale

 Linear Search

 Monte-Carlo for European Option

 Runlength Encoding

 Backprojection

 Scale Invariant Feature Transform (SIFT)

14

http://sourceforge.net/projects/bemap/
http://sourceforge.net/projects/bemap/

 Overview (cont.)

 Has well-optimized OpenCL kernel codes

Both platform independent and platform

dependent OpenCL kernels are provided

 Optimization methods and benchmark results are

well-documented
 http://sourceforge.net/projects/bemap/files/Documentations/

15

 Overview (cont.)

BEMAP

Hand-tuned
Program

OpenCL

Compiler

Parallel
Program

BEMAP

Sequential
Program

Parallel
Program

Auto
Parallelizer

Compiler

16

 Optimization Methods

 SIMD (explicit vectorization)

 Force the compiler to use wide registers to do a single operation for

multiple data (e.g. Intel’s [X|Y]MM registers)

 Simple loop-unrolling

 Memory Access

 Coalesced, Back-conflicted, Random

 Caching with shared memory

 Programmable cache may boost up the memory transfer

performance (DMA architecture)

 Memory Mapping

 Mapped (Pinned) memory gives asynchronous memory access for

the host-device communication

 Native Math Functions

 Built-in math functions are provided in some platforms

17

 BEMAP as a benchmark for PEMAP

BEMAP

Hand-tuned
Program

OpenCL

Compiler

Parallel
Program

BEMAP

Sequential
Program

Parallel
Program

Insert

PEMAP’s

annotations

Compiler

18

 BEMAP as a standalone benchmark

Workload
Ref

Plat1
CPUOCL

Plat1
GPUOCL

Plat1
Ref

Plat2
CPUOCL

Plat2
GPUOCL

Plat2

BlackScholes 6109.07 32.05 1.70 1587.80 21.41 1.40

Gaussian 227.42 1.24 0.39 179.30 1.40 0.27

Grayscale 4.32 0.53 0.06 5.47 0.52 0.07

LinearSearch 26.25 8.42 47.14 33.33 14.24 24.08

MonteCarlo 193817.4 696.53 49.68 27423.70 264.49 41.50

Runlength 518.28 17.07 90.29 370.50 16.77 43.36

Backprojection 11297.43 195.03 75.83 11872.04 116.08 69.70

SIFT 1860.00 194.11 55.54 1452.00 170.51 48.02

RefPlat1 & CPUOCLPlat1:

Intel i7-X990 @ 3.47GHz (Nehalem)

8GB memory, 6 cores, 12 threads (HT)

GPUOCLPlat1:

NVIDIA GTX 570 @ 1.46GHz (Fermi GF-110)

480 CUDA cores, 1.2GB GDDR5 memory

RefPlat2 & CPUOCLPlat2:

Intel Core i7-3770K @ 3.50GHz (Ivy Bridge)

8GB memory, 4 cores, 8 threads (HT)

GPUOCLPlat2:

NVIDIA GTX 680 @ 1.06 GHz (Kepler GK-104)

1536 CUDA cores, 2GB GDDR5 memory

Time unit is milliseconds (ms), using BEMAP’s default parameters

19

Conclusion

We proposed two development tools for

parallelization.

PEMAP is an estimation tool of performance

increase through parallelization.

Users of PEMAP need to do nothing other than

inserting two annotations.

BEMAP is a benchmark suite to assist the

development of an auto-parallelizer

20

