Manycore Processor for Video Mining Applications

Jan. 25th 2013

Yukoh Matsumoto, Hiroyuki Uchida, Michiya Hagimoto, Yasumori Hibi, Sunao Torii, Masamichi Izumida

TOPS Systems Corp.

TOPS Systems Corp.

- Next-Gen Embedded Systems : Requires more performance(100's GOPS~ 1 POPS)
- Power Consumption : Already reached upper limit (~W)

<Expectations on Many-Core>

Ref: NDEO Technology Roadmap 2009, I-48p, Fig. 1-6

Energy-Efficient Computing goes to Heterogeneous & Manycore

TOPS Systems Corp.

SMYLEvideo: Application Domain Specific **TOPS:** Heterogeneous Manycore for Computer Vision

"ML and 3D Object Recognition on Image Stream"

Computer Vision (CW) = EYE (sensor) + CEREBRUM (decision)

- Conceptually: Machine Learning (ML) ≒ Functional Configuration
- High Perf. Requirement: More than 1 TOPS
- Inherent Parallelism: More than 99% of processing
- Several types of Proc.: Huge cost with Hardwires Implementation
 - Resolutions: VGA, XGA, SGGA, FHD, 2K, 4K, etc.
 - Algorithms: SIFT, Optical Flow, Ransac, Viola & Jones, Model based Recognitions, etc.

Multi-Medium Streams (MPEG-2, MPEG-4, H.264, etc.)

Key requirement is High Performance with Flexibility

UHC NUTUMATION CONFERENCE

> Others:

TOPS Systems Corp.

What is Video Mining System

Parallelisms in Algorithms for Video Mining

Application	Objective	Algorithm	Parallel	ism
Video Analysis	Prediction of Motion Vector	Optical Flow	Line	
	Specific feature detection and extraction	SIFT ^{*1}	Data Partitioning	
	Detection of human, and tracking	Cascaded Haar Like	Pixel Level	
	Line detection for field separation	Huff	Line	
	Elimination of error from continuous frames	Ransac ^{*2}	Sample Data	00
Human Search	Face detection from several angles	Vector Face Detection	Pixel Blocks	
	Extraction of features on faces	Model Based Face Detection	Task Level	$\overset{\sim}{\sim}$
	Specific feature detection and extraction	SIFT	Data Partitioning	
Video Editing	Segment Extraction	Graph based Segmentation	Grid Level	
	Detection of Motion Vector	Block Matching	Line	

*1 SIFT: Scale-Invariant Feature Transform

*2 Ransac Random Sample Consensus

Many type of pallarelisms are inherent in algorithms for Video Mining

TOPS Systems Corp.

- Real-Time Processing : 1TOPS~
- Scalability :
- Programmability :
- Flexibility :

- 10fps, 20fps, 30fps
- **Software Based Implementation**
 - **OpenCV (Computer Vision)**
 - SIFT, Optical Flow, Ransac, Viola & Jones, Model based Recognitions, SVM, etc.
- Low Power : ~1.5W
- Low Clock Frequency : ~100MHz

System Level Architecture of SMYLEvideo

Local Memory

Stream

IN

Data Parallel

Data Paralle (SIMD)

time

Core can keep

Processing of

Kernel

Stream

OUT

Kernel

Stream

OUT

Distributed Processing with KPN Local Memory **Non-Shared Memory Processes** Zero-Overhead Message Passing Mechanism Kahn Process Network **Combination of Parallelisms** Distributed Parallel Processing (Task, Pipeline) Task-A Data Parallelism (High-Level, Instruction Level) Task Parallel Task-B **Stream Processing (Core)** Task-C Kernel Task-D Stream-In (Read Message) **Combination of Data & Task Parallel** Stream-Out (Write Message) Stream Stream Stream IN. IN IN **Optimization of Core** Support Stream Processing : background Stream Kernel Kernel Kernel Complex Inst : Reduction of Kernel cycle _ **FIFO** support mechanism _ Stream Stream Reduction of energy for instruction / data supply OUT OUT Distributed Processing, ZOMP, Task Parallel, Stream Processing, ASIP TOPS Systems Corp. www.topscom.co.jp

SMYLEvideo : Basic Architecture

Partitioning **OpenCL vs. Distributed Processing**

- **OpenCL** (CPU centric) *
 - **Bottleneck**
 - Processing on Host \geq
 - Increasing communication with Host

- ** **Distributed Processing**
 - **Scalability**
 - Can combine with Data Parallel Processing

Software Partitioning Sequential to Distributed Processing

Investigation has done on Many Algorithms ; Viola & Jones, SVM, SIFT, etc. TOPS Systems Corp. www.topscom.co.jp

Approach for Energy-Efficient Computing

- Goal : High-Performance & Low-Power Programmable Accelerator (Energy-Efficient, Low Cost, Flexible, Scalable)
- Approach : Low Clock Frequency

High Performance @ Low Clock Frequency drives Low Power TOPS Systems Corp. www.topscom.co.jp

Approach to reduce clock frequency with Architecture-Algorithm Co-Design

TOPS Systems Corp.

Stream Processing Core

MPSoC'10

Hide overhead of Stream-In and Stream-Out

Inter-Core FIFO : Register Bank Sharing MPSoC'10

Reduction of Memory Access Bandwidth and its Energy

Reduction of memory traffic

Path for Message Passing

Significant Reduction of Memory Trafifc : more than 30% TOPS Systems Corp. www.topscom.co.jp

ZOMP TOPS Zero-Overhead Message Passing Mechanism

 Remove cycles and memory access for checking FIFO counts and synchronization

UHGNITOMATION

TOPS Systems Corp.

ASIA SOU

Memory Access reduction by Distributed Stream Processing

- Memory Centric Processing
 - Each core works data on External Memory
 - Integration of processors and memories
- Distributed Stream Processing
 - Core to Core Stream passing
 - On-Chip memory
 - Register Sharing

Frame based vs. Block based Processing

ASIA SOUT

Frame based vs. Block based Processing

	Frame based Processing	Block based Processing	
Global Memory Usage	22Mbytes	3.1Mbytes	
Cluster Local Memory Usage	0.15Mbytes	0.8Mbytes	
Recognition Latency	167mSec(5.1frame)	100mSec(3frame)	

Memory Usage : 1/7, Memory Bandwidth Requirement : 1/5TOPS Systems Corp.www.topscom.co.jp

SMYLEvideo Configuration

- Manycore will play a crucial role in extending the roadmap for enabling the next generation SoCs required for "Video Mining" one of Computer Vision systems.
- Zero-Overhead Message Passing Mechanism (ZOMP) can efficiently increases the system performance and scalability of Manycore processors.
- Block based distributed processing drastically reduces memory access bandwidth and increases room for higher performance on Manycore processors.
- SMYLEvideo provides scalability in performance and functionality with its clustered architecture.

TOPS Systems Corp.