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Introduction and Motivation

Introduction — MPSoC Trends

m Homogeneous vs. Heterogeneous Multi-Processor System-on-Chip
m Many General Purpose Processors (GPPs) m System Level Parallelism
m Specialized Processing Elements e.g. Digital Signal Processors (DSPs)
m Very Long Instruction Word (VLIW) m Instruction Level Parallelism (ILP)
m MPSoC Complexity limits use of Analytical Methods for Design Space
Exploration (DSE) and System Validation ™ Simulation Systems
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Introduction and Motivation

Software Simulation Levels and Native Simulation

Software Simulation Levels

m Interpretation
m Instruction Set Simulation (ISS).
= Native Simulation

m Source Level Simulation (SLS).
m Intermediate Representation Level Simulation (IRLS).

m Binary Level Simulation (BLS)

m Dynamic Binary Translation (DBT)
m Static Binary Translation (SBT)
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Software Simulation Levels and Native Simulation

Software Simulation Levels

m Interpretation

m Instruction Set Simulation (ISS).
m Native Simulation

m Source Level Simulation (SLS).

m Intermediate Representation Level Simulation (IRLS).
m Binary Level Simulation (BLS)

m Dynamic Binary Translation (DBT)
m Static Binary Translation (SBT)

What is Native Simulation ?

m When software is compiled/translated for host machine and does not
require run-time translation or interpretation support.

m Native software accesses host machine resources (CPU, Memory, ...)
directly or at-least has an illusion of direct access.
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Problem Definition — Simulation of VLIW on Native Machines

Native Simulation Platform and Compilation Flow — |

Software Execution in Virtual Machine

m Software executes in target address-space
m Transparent memory accesses.

m Requires Host-Dependent HAL layer
implementation e.g. x86.

Native Processor Wrapper

m Initializes and Runs VM(s) using KVM
userspace library and forwards MMIO
accesses to SystemC platform.

m Provides semi-hosting facilities e.g.
annotations, profiling etc.

Like a Baremetal Machine

m Software executing in Guest Mode cannot
see the Host operating system and libraries
m No Dynamic Translations.
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Problem Definition — Simulation of VLIW on Native Machines

Native Simulation Platform and Compilation Flow — Il

aditional Compilation Flow

m Software is Compiled to IR using Compiler
Front-end.

m Target-specific Backend optimizes the IR.

® An annotation pass annotates the Cross-IR
m Equivalent CFG (Control Flow Graph)
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Problem Definition — Simulation of VLIW on Native Machines

Native Simulation Platform and Compilation Flow — Il

Traditional Compilation Flow

m Software is Compiled to IR using Compiler
Front-end.

m Target-specific Backend optimizes the IR.

S COMPILER
FRONTEND
M

®m An annotation pass annotates the Cross-IR
m Equivalent CFG (Control Flow Graph) [ Bt

What can we do for VLIW Machines ?

m Source Level Simulation?

C/C++ Sources

Cross-IR

. . . § ANNOTATION — Annotated
sequential vs. parallel instructions. [ eass Cross R
m IR Level Simulation? v l
Requires a retargetable compiler e.g. LLVM [mg;gg;;ml [ Jarave ]

m Source code may not be available
m Binary Translation for Native Simulation?

v !
Equivalent &
CFG
m Static translation is a better match i.e. %

Explicit ILP in VLIW. Target Binary Native Binary
m Generated code could be optimized.
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Problem Definition — Simulation of VLIW on Native Machines

Superscalar vs. VLIW Processors
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Problem Definition — Simulation of VLIW on Native Machines

Superscalar vs. VLIW Processors

INSTRUCTION
CACHE (1$)

¢

Instruction Buffers,
Decoders, Dispatchers.
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Instruction
Registers

Instruction Bus

General Purpose
Registers (GPRs)
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DATA CACHE (DS)

VLIW: A Simplified Superscalar

m No Reservation Stations or ROBs
m No Dynamic Scheduling.

m Static Scheduling ™ Compile-Time
ILP Specification.
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VLIW: Still A Complex Architecture !

m Parallel Instruction Execution i.e.
Execute Packets ™ Data Hazards.

m Complex Pipelines
m Data + Control Hazards.
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Problem Definition — Simulation of VLIW on Native Machines

VLIW Processors Features and Translation Issues (TI C6x Series)

Key Features — VLIW Processors

m NOP Instructions

m Delay Slots ™ Out-of-Order Completion.

m No Pipeline Flushing
Instruction Fetch ™ Instruction Execution.

=T

m Data Hazards (RAW, WAR, WAW). ‘ PG ‘ Ps ‘ Pw‘ PR ‘ P ‘ Dc‘ & m

m Control Hazards (Nested Branches). roowrsn 3

m Early Termination e.g. Multi-Cycle NOPs. ’ © { ® { PW‘ = { z { :‘:l = l = I = ‘

m Side Effects i.e. Modification of Source [ro][ws [w] = [ [ [ e
Operands. ] ve [ [ow ] e e [ o2 = |

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 8 /26



Problem Definition — Simulation of VLIW on Native Machines

Address Translation 4 Indirect Branches

Data, Instruction and I/O Memory Accesses

m Exploit memory virtualization capabilities provided by VMM.

m Transfer |/O accesses to SystemC platform.

Indirect Branch Instructions

m No dynamic translation support "™ Resort to static translation.

m Provide multi-level translations i.e. Basic Blocks and Execute Packets.

Hand-Written and Self-Modifying Code

m Branch Instructions targeting non-startup instructions in Execute Packets.
Usually VLIW compilers do not produce such code ™ Not Addressed.

m Presence of Pointers and Dynamic Linking. No very common in VLIW
binaries ™ Not Addressed.
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Table of Contents

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

A Generic Approach lllustrated using LLVM

Translation Flow — RISC Machines

Target-specific instruction decoders.

COMPILER

RISC-specific Basic Block construction. sl |
Target ISA functional specification in C. Trge e e
Target-independent intermediate code generation. ® T — | ®
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

A Generic Approach lllustrated using LLVM

Translation Flow — RISC Machines

Target-specific instruction decoders.
RISC-specific Basic Block construction.

Target ISA functional specification in C.
Target-independent intermediate code generation.

Native compilation using native backend.

Translation Flow — VLIW Machines

m Instruction decoders "™ VLIW packet decoders.
m VLIW-specific Basic Block construction.

- Better suited to VLIW i.e. Minimal translation
unit is an Execute Packet (Upto 8 Instructions).
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

VLIW Packet Decoder + Target Basic Blocks

VLIW Packet Decoding

m Decodes target instructions ™ Generates in-memory Instruction Objects.

m Each object contains target-specific details (Predicate, Operands Types,
Values, Delay Slots etc.)

m Each object can generate a Function Call in LLVM-IR (Architecture +
Instruction + Operand Types)

m Extract Parallelism from instruction stream "™ Execute Packets.

m Branch Analysis ™ Mark statically known Branch Targets.

Basic Block Construction

m Start a New Basic Block for each statically known Branch Target.

m End at Branch Instruction + Execute Packets within its Delay Slot Range.
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

VLIW ISA Functional Specifications — |

Target-specific Instruction Behavior in LLVM-IR

m When and How to modify the Register, Memory or Control state of CPU.
m We require ISA behavior in LLVM-IR for Composing Intermediate Code.

Target-specific Instruction Behavior in C

m Defined in 'Simple’ C and converted to LLVM-IR using LLVM Compiler
Front-End.

m Multiple ISA behavior definitions i.e. Exhaustively representing All
Operand Type combinations "™ Simple and Easy to Generate.
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

VLIW ISA Functional Specifications — Il

An ISA Example: MPYSU Instruction in 'C’

/// MPYSU - Multiply Signed 16 LSB and Unsigned 16 LSB. 1
ReturnStatus_t 2
C62xMPYSU_SC5_UR16_SR32(C62x_DSPState_t * p_state, uint8_t is_cond, 3
uint8_t be_zero, uintl6_t idx_rc, uint32_t constant, uintl6_t idx_rb, 4
uint16_t idx_rd, uint8_t delay, C62x_Result_t * result){ 5
if (Check_Predicate(p_state, is_cond, be_zero, idx_rc)) 6

{ 7
int16_t ra = CBXSC5_TO0_S16(constant); 8
uint16_t rb = GET_LSB16(p_state->m_regl[idx_rbl); 9
int32_t 1rd = ra * rb; 10

11

SAVE_REG_RESULT (result, idx_rd, rd); 12

¥ 13
return 0K; 14

¥ 15

Key Elements

m Naming Convention: C62zMPYSU_SC5_UR16_SR32(. . .)
m Behavior Specification: int32_t rd = ra * 7b;

m Result on Parent's Stack: C62z_Result_t * result " Life time + Scope.
m Return Value: 0k ™ Instruction does not require special processing.
mw Early Termination, Wait-for-Interrupt, Error Condition etc..
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block. ey 1

1
|

sasic biock |
BASIC BLOCK i

e updaed
pC, 1= 0)

BAsxc BLock

m Core and Update Basic Block Pair
for each Target Execute Packet.

I

Per Execute Packet
Condition
(€T 1= 0)

m Control Flows between Generated IR
Basic Blocks.

Early Terminatio

-«
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Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block.

m Core and Update Basic Block Pair
for each Target Execute Packet.

m Control Flows between Generated IR
Basic Blocks.

Core Basic Blocks

C1 Stack Memory Allocation
Instructions for ISA Results.
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for each Target Execute Packet.
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Core Basic Blocks
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block.

m Core and Update Basic Block Pair
for each Target Execute Packet.

m Control Flows between Generated IR
Basic Blocks.

Core Basic Blocks

C1 Stack Memory Allocation
Instructions for ISA Results.

C2 Calls to ISA Behavior in LLVM-IR.

C3 No Delay Slots ™ Immediate Update
Delay Slots ™ Buffered Update;
Handles Data Hazards + Side-Effects

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

ENTRY
BASIC BLOCK

UPDATE H
BASIC BLOCK | |
C Updated '
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RETURN
BASIC BLOCK

Per Execute Packet

ET, = Call @ISA(..., &R,);
ET, = Call @ISA(..., &R,);

ET, = Call @ISA(..., &R,);

Immed(R;); or Buffer(R,);
Immed(R,); or Buffer(R,);

Immed(R,); or Buffer(R,);
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV
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Values e.g. Early Termination.
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block. | ooy 1

CORE
BASIC BLOCK

©
(©)
(E_;J%v § © Immed(R,); or Buffer(R,);
(©}
(©)
(O]

ET, = Call @ISA(..., &R,);
ET, = Call @ISA(..., &R,);

m Core and Update Basic Block Pair
for each Target Execute Packet.

UPDATE

ETc = ET, | ET, | ... | ET,
BASIC BLOCK | |

Branch(ETc != 0, BBger, BBupoare);

Per Execute Packet

m Control Flows between Generated IR : i
Basic Blocks. LU

[Gileincec;
Call @IncCycles();
RPC; = Call @UpdateRegs();

RETURN

. BASIC BLOCK
Core Basic Blocks

C1 Stack Memory Allocation

Instructions for ISA Results. Update Basic Blocks

C2 Calls to ISA Behavior in LLVM-IR.

C3 No Delay Slots ™ Immediate Update
Delay Slots ™ Buffered Update;
Handles Data Hazards + Side-Effects U2 If RPCy # 0 = Branch Taken:

C4 Instructions for testing ISA Return Pass control to Software Kernel
Values e.g. Early Termination. Handles Nested Branches

Branch(RPC; != 0, BByer, BBcore);

Ul Update Processor State
Registers including PC, Cycles
and Buffered Results.
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space

m All Memory Accesses are in Target Address Space; Thanks to
Hardware-Assisted Memory Virtualization.

m Native Binary Size > VLIW Binary Size ™ Extended Target Address Space.
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Native Memory Accesses using Memory Virtualization

Extended Target Address Space

m All Memory Accesses are in Target Address Space; Thanks to
Hardware-Assisted Memory Virtualization.

m Native Binary Size > VLIW Binary Size ™ Extended Target Address Space.
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space

m All Memory Accesses are in Target Address Space; Thanks to

Hardware-Assisted Memory Virtualization.

m Native Binary Size > VLIW Binary Size ™ Extended Target Address Space.

SystemC

Simulation Flow Address Space
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Target VLIW
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space

m All Memory Accesses are in Target Address Space; Thanks to
Hardware-Assisted Memory Virtualization.

m Native Binary Size > VLIW Binary Size ™ Extended Target Address Space.

SystemC Extended Target

Simulation FlOW Address Space Address Space

Initialize Platform.
Load Bootstrap Code + —
Native Binary. zzpe]
Memory

Boot KVM CPUs.
Load Target VLIW Binary.
Continue Simulation.
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Multiple Code Generation/Translation Levels

m Each Execute Packet ™ Slower Simulation (Switching in Software Kernel)

ENTRY
7| BASIC BLOCK
CORE
BASIC BLOCK
Software
Kernel LW

ADDRESS

MAPPINGS RETURN
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Multiple Code Generation/Translation Levels

m Each Execute Packet ™ Slower Simulation (Switching in Software Kernel)

m Basic Blocks Only ™ Dynamic Translation Support ? (Indirect Branches)

Kernel

ADDRESS
MAPPINGS

ENTRY
7| BASIC BLOCK
CORE
BASIC BLOCK
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Multiple Code Generation/Translation Levels

Which Translation Level and Why / Why Not ?

m Each Execute Packet m Slower Simulation (Switching in Software Kernel)
m Basic Blocks Only ™ Dynamic Translation Support ? (Indirect Branches)
m Basic Blocks + Execute Packets ™ Fast Simulation but Redundant Code.

ENTRY
N BASIC BLOCK

ENTRY
BASIC BLOCK

CORE
BASIC BLOCK
B
iy UPDATE
5 BASIC BLOCK

Indirect Branches
to Non-Startup
Execute|Packets

Y
CORE
BASIC BLOCK
E UPDATE
BASIC BLOCK

PC Updated Y
(RPC, 1= 0)

Condition
= 0)

N x Execute Packet
’1

Early Termination
Condition
(ETc !

i

Early Terminatio:

ADDRESS

RETURN MAPPINGS RETURN
BASIC BLOCK BASIC BLOCK
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Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Multiple Code Generation/Translation Levels

Code Generation Modes — Summary

l Generation Mode

“ Execute Packets [ Basic Blocks [ Hybrid (BB+EP) ]

Simulation Speed Slow Medium Fast
Simulator Size Medium Small Large
Dynamic Translations Not Required Required Not Required
H/W Synchronization Per EP Per EP/BB Per EP/BB
Self Modifying Code Support No Yes No
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Experiments and Results

Experimental Setup and Benchmarks

Test Kernels — Control and Compute Intensive

m Fibonacci Index — Recursive m IDCT Block Decoding

m Factorial Index — Recursive

Benchmark / Reference Simulators

m Tl C6x Full Cycle Accurate simulator ( T/-Céx-FCA)
m Tl C6x Device Functional Cycle Accurate simulator ( T/-C6x-DFCA)

Modest Host Machine for Experimentation

m Pentium(R) Dual-Core CPU E5300 (2.60 GHz, 2M Cache) + 2 GB RAM.
m Linux version 2.6.32-37 32-bit (SMP)
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Experiments and Results

Experimental Results — Fibonacci Index
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Experimental Results

Experiments and Results
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Hybrid (BB+EP) --->¢---
Hybrid+LMaps+Opt
1000 - Hybrid+Hash+Opt
TI-Céx-DFCA

TI-C6x-FCA -~

Simulation Time (Seconds)

Simulation Time (Seconds)

1 2 3 4 5 6 7 8

Mian-Muhammad Hamayun (TIMA Laboratory)

9 10 11 12 13 14
Factorial Index

ASPDAC 2013

100

ExecutePacket (EP) —+—
Hybrid (BB+EP) --¢--
Hybrid+LMaps+Opt -+~ %-

Hybrid+Hash+Opt -E}-
TI-C6x-DFCA - If
TI-C6x-FCA --@--

5 10 15 20 25 30 35 40
IDCT -- Number of Blocks

January 25t 2013 22 /26



Experiments and Results

Experimental Results — Summary

1000

100

o1

Simulation Time (Seconds)

0.001

0.0001

DirectHos! s

Static-BT

Fibonacci(index=30) Factorial(index=14,100K)  IDCT(Blocks=40)
Benchmark Application

Average Speedups/Slowdowns of SBT-Based Simulation

L Cox-FCA | C6x-DFCA Native DirectHost
Application
Speedup Speedup Slowdown | Slowdown
Fibonacci 159x 39x 90x 101x
Factorial 132x 33x 205x 220x
IDCT 129x 31x 133x 141x
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Summary and Conclusions

Final Remarks

Summary

m A flow for Static Translation of VLIW Binaries to Native Code.
m Functionally Identical to TI Simulators; Verified by Trace Comparison.

m Profits from LLVM Infrastructure Components ™ Optimized Native Code.

Limitation and Overhead

m Completely Static ™ Does not support Basic Block only simulation.

m Hybrid Translation mode ™ Redundancy in Translated Code.

Future Directions

m Automatic Generation of VLIW Instruction Decoders and ISA Behavior.
m Performance Estimation of Complex Benchmark Applications.
m Reducing the VLIW Architecture Modeling Overheads in Translated Code.
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Questions & Answers

Thanks for Your Attention !
Questions ?
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