Native Simulation of Complex VLIW Instruction Sets Using
Static Binary Translation and Hardware-Assisted Virtualization
Mian-Muhammad Hamayun, Frédéric Pétrot and Nicolas Fournel

System Level Synthesis Group,
TIMA Laboratory, CNRS/INP Grenoble/UJF,
46, Avenue Félix Viallet, F-38031 Grenoble, FRANCE

January 25, 2013

i ité | | G bl |N|P ‘
Jggg:ﬂsggurier, & C)l

GRENOBLE

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 1/26

Introduction and Motivation

Introduction — MPSoC Trends

m Homogeneous vs. Heterogeneous Multi-Processor System-on-Chip
m Many General Purpose Processors (GPPs) m System Level Parallelism
m Specialized Processing Elements e.g. Digital Signal Processors (DSPs)
m Very Long Instruction Word (VLIW) m Instruction Level Parallelism (ILP)
m MPSoC Complexity limits use of Analytical Methods for Design Space
Exploration (DSE) and System Validation ™ Simulation Systems

GPP GPP

g4
237 F
g
@

¢
g
g

£
z

&
B

@

(OsTDs)
(BJDs) (T5]Ds]
DSP RAM
(OsTDs)

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 2 /26

Introduction and Motivation

Introduction — MPSoC Trends

m Homogeneous vs. Heterogeneous Multi-Processor System-on-Chip

m Many General Purpose Processors (GPPs) m System Level Parallelism
m Specialized Processing Elements e.g. Digital Signal Processors (DSPs)
m Very Long Instruction Word (VLIW) m Instruction Level Parallelism (ILP)

m MPSoC Complexity limits use of Analytical Methods for Design Space

Exploration (DSE) and System Validation ™ Simulation Systems

01ps)

]

GPP

&
et
=
@l

DSP Application

HAL API

Hardware Abstraction Layer

‘ E’l
38
E-u

=
£
i
\

Mian-Muhammad Hamayun (TIMA Laboratory)

ASPDAC 2013

January 25th, 2013

2/26

Introduction and Motivation

Software Simulation Levels and Native Simulation

Software Simulation Levels

m Interpretation
m Instruction Set Simulation (ISS).
= Native Simulation

m Source Level Simulation (SLS).
m Intermediate Representation Level Simulation (IRLS).

m Binary Level Simulation (BLS)

m Dynamic Binary Translation (DBT)
m Static Binary Translation (SBT)

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 3/26

Introduction and Motivation

Software Simulation Levels and Native Simulation

Software Simulation Levels

m Interpretation

m Instruction Set Simulation (ISS).
m Native Simulation

m Source Level Simulation (SLS).

m Intermediate Representation Level Simulation (IRLS).
m Binary Level Simulation (BLS)

m Dynamic Binary Translation (DBT)
m Static Binary Translation (SBT)

What is Native Simulation ?

m When software is compiled/translated for host machine and does not
require run-time translation or interpretation support.

m Native software accesses host machine resources (CPU, Memory, ...)
directly or at-least has an illusion of direct access.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 3/26

Introduction and Motivation

Problem Definition — Simulation of VLIW on Native Machines

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Experiments and Results

Summary and Conclusions

Problem Definition — Simulation of VLIW on Native Machines

Native Simulation Platform and Compilation Flow — |

Software Execution in Virtual Machine

m Software executes in target address-space
m Transparent memory accesses.

m Requires Host-Dependent HAL layer
implementation e.g. x86.

Native Processor Wrapper

m Initializes and Runs VM(s) using KVM
userspace library and forwards MMIO
accesses to SystemC platform.

m Provides semi-hosting facilities e.g.
annotations, profiling etc.

Like a Baremetal Machine

m Software executing in Guest Mode cannot
see the Host operating system and libraries
m No Dynamic Translations.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

Guest Mode
Target Address Space

Multi-threaded Applications g >
2 15}

HDS API I E
s|lao

Operating Sy H % =
s Comm. S|
ystem N . ©
Libraries | p|s O

= v

HAL API Sz

Host Dependent HAL > £

Al
VM Enter [y VM Exit (+Reason)

To
§§ [KVM Kernel Driver
X 10CTLs__A| Callbacks
[KVM User Space Library J H 5
v 31 T 1]
il Ay v o8
Interrupt |[MMIO Semi- om
Controller || Accesses || Hosting ° s
o
8
&
3o
38 RAM
=3
'«
<
& g P A vy 2
g Comm. Network % 5
2 >~;
()

[ooc] [om] (]

January 25t 2013 5/ 26

Problem Definition — Simulation of VLIW on Native Machines

Native Simulation Platform and Compilation Flow — Il

aditional Compilation Flow

m Software is Compiled to IR using Compiler
Front-end.

m Target-specific Backend optimizes the IR.

® An annotation pass annotates the Cross-IR
m Equivalent CFG (Control Flow Graph)

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

S COMPILER
FRONTEND

M

IR (Intermediate
Representation)

TARGET -
BACKEND >}

<~—>| CrossR
{
! [annotaTION Annotated
: PASS | Cross-R

\d l

TARGET NATIVE
CODE EMITTER BACKEND
\ l
Equivalent
CFG
E —

Target Binary Native Binary

January 25t 2013 6/ 26

Problem Definition — Simulation of VLIW on Native Machines

Native Simulation Platform and Compilation Flow — Il

Traditional Compilation Flow

m Software is Compiled to IR using Compiler
Front-end.

m Target-specific Backend optimizes the IR.

S COMPILER
FRONTEND
M

®m An annotation pass annotates the Cross-IR
m Equivalent CFG (Control Flow Graph) [Bt

What can we do for VLIW Machines ?

m Source Level Simulation?

C/C++ Sources

Cross-IR

. . . § ANNOTATION — Annotated
sequential vs. parallel instructions. [eass Cross R
m IR Level Simulation? v l
Requires a retargetable compiler e.g. LLVM [mg;gg;;ml [Jarave]

m Source code may not be available
m Binary Translation for Native Simulation?

v !
Equivalent &
CFG
m Static translation is a better match i.e. %

Explicit ILP in VLIW. Target Binary Native Binary
m Generated code could be optimized.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 6 /26

Problem Definition — Simulation of VLIW on Native Machines

Superscalar vs. VLIW Processors

Instruction Bus

Reservation
Stations

E== B2 B
0 g 0

Functional Functional Functional Functional
Unit#0 Unit#1 Unit#2 Unit#3
y3

Mian-Muhammad Hamayun (TIMA Laboratory)

Instruction Bus Operands
T T } Bus
Functional | |Functional | |Functional | | Functional
Unit#0 Unit#1 Unit#2 Unit#3
O 0 O O

January 25th, 2013

Problem Definition — Simulation of VLIW on Native Machines

Superscalar vs. VLIW Processors

INSTRUCTION
CACHE (1$)

¢

Instruction Buffers,
Decoders, Dispatchers.

C

INSTRUCTION
CACHE (1$)

g

Instruction
Registers

Instruction Bus

General Purpose
Registers (GPRs)

I Instruction Bus Operands
B B B B = T ;
& pY i £ i
Functional | [Functional | |Functional | |Functional Functional | | Functional| | Functional | | Functional
Unit#0 Unit#1 Unit#2 Unit#3 Unit#0 Unit#1 Unit#2 Unit#3
O 0 O O

DATA CACHE (DS)

VLIW: A Simplified Superscalar

m No Reservation Stations or ROBs
m No Dynamic Scheduling.

m Static Scheduling ™ Compile-Time
ILP Specification.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

VLIW: Still A Complex Architecture !

m Parallel Instruction Execution i.e.
Execute Packets ™ Data Hazards.

m Complex Pipelines
m Data + Control Hazards.

January 25th, 2013

7/26

Problem Definition — Simulation of VLIW on Native Machines

VLIW Processors Features and Translation Issues (TI C6x Series)

Key Features — VLIW Processors

m NOP Instructions

m Delay Slots ™ Out-of-Order Completion.

m No Pipeline Flushing
Instruction Fetch ™ Instruction Execution.

=T

m Data Hazards (RAW, WAR, WAW). ‘ PG ‘ Ps ‘ Pw‘ PR ‘ P ‘ Dc‘ & m

m Control Hazards (Nested Branches). roowrsn 3

m Early Termination e.g. Multi-Cycle NOPs. ’ © { ® { PW‘ = { z { :‘:l = l = I = ‘

m Side Effects i.e. Modification of Source [ro][ws [w] = [[[e
Operands.] ve [[ow] e e [o2 = |

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 8 /26

Problem Definition — Simulation of VLIW on Native Machines

Address Translation 4 Indirect Branches

Data, Instruction and I/O Memory Accesses

m Exploit memory virtualization capabilities provided by VMM.

m Transfer |/O accesses to SystemC platform.

Indirect Branch Instructions

m No dynamic translation support "™ Resort to static translation.

m Provide multi-level translations i.e. Basic Blocks and Execute Packets.

Hand-Written and Self-Modifying Code

m Branch Instructions targeting non-startup instructions in Execute Packets.
Usually VLIW compilers do not produce such code ™ Not Addressed.

m Presence of Pointers and Dynamic Linking. No very common in VLIW
binaries ™ Not Addressed.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 9/26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Table of Contents

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 10 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

A Generic Approach lllustrated using LLVM

Translation Flow — RISC Machines

Target-specific instruction decoders.

COMPILER

RISC-specific Basic Block construction. sl |
Target ISA functional specification in C. Trge e e
Target-independent intermediate code generation. ® T — | ®
Native compilation using native backend. [c:f;.i:%.:..] [’::EEEE:]

Target [0}
Instructions | —

E

ADDRESS FUNCTIONS

T MAPPINGS in IR
INSTRUCTION NATIVE
DECODER BACKEND

f !
Identical
% =
oo,

Target Binary Native Binary

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 11 /26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

A Generic Approach lllustrated using LLVM

Translation Flow — RISC Machines

Target-specific instruction decoders.
RISC-specific Basic Block construction.

Target ISA functional specification in C.
Target-independent intermediate code generation.

Native compilation using native backend.

Translation Flow — VLIW Machines

m Instruction decoders "™ VLIW packet decoders.
m VLIW-specific Basic Block construction.

- Better suited to VLIW i.e. Minimal translation
unit is an Execute Packet (Upto 8 Instructions).

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

Target ISA
Specifications in C

COMPILER

|

iyt Torgetion
(BB T Behavior in IR
VLIW BASIC BLOCKS
@ — l [0
BASIC BLOCK INTERMEDIATE
(consmumo"] [GENERATION
oo f
00BOBO®O ®
oooe
S ADDRESS FUNCTIONS
EXECUTE PACKETS et
o *

VLIW PACKET
DECODER

/
=)

A

Identical
% = ﬁﬁ
-

Target Binary

!

Native Binary

January 25t 2013 11 /26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

VLIW Packet Decoder + Target Basic Blocks

VLIW Packet Decoding

m Decodes target instructions ™ Generates in-memory Instruction Objects.

m Each object contains target-specific details (Predicate, Operands Types,
Values, Delay Slots etc.)

m Each object can generate a Function Call in LLVM-IR (Architecture +
Instruction + Operand Types)

m Extract Parallelism from instruction stream "™ Execute Packets.

m Branch Analysis ™ Mark statically known Branch Targets.

Basic Block Construction

m Start a New Basic Block for each statically known Branch Target.

m End at Branch Instruction + Execute Packets within its Delay Slot Range.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 12 /26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

VLIW ISA Functional Specifications — |

Target-specific Instruction Behavior in LLVM-IR

m When and How to modify the Register, Memory or Control state of CPU.
m We require ISA behavior in LLVM-IR for Composing Intermediate Code.

Target-specific Instruction Behavior in C

m Defined in 'Simple’ C and converted to LLVM-IR using LLVM Compiler
Front-End.

m Multiple ISA behavior definitions i.e. Exhaustively representing All
Operand Type combinations "™ Simple and Easy to Generate.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 13 /26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

VLIW ISA Functional Specifications — Il

An ISA Example: MPYSU Instruction in 'C’

/// MPYSU - Multiply Signed 16 LSB and Unsigned 16 LSB. 1
ReturnStatus_t 2
C62xMPYSU_SC5_UR16_SR32(C62x_DSPState_t * p_state, uint8_t is_cond, 3
uint8_t be_zero, uintl6_t idx_rc, uint32_t constant, uintl6_t idx_rb, 4
uint16_t idx_rd, uint8_t delay, C62x_Result_t * result){ 5
if (Check_Predicate(p_state, is_cond, be_zero, idx_rc)) 6

{ 7
int16_t ra = CBXSC5_TO0_S16(constant); 8
uint16_t rb = GET_LSB16(p_state->m_regl[idx_rbl); 9
int32_t 1rd = ra * rb; 10

11

SAVE_REG_RESULT (result, idx_rd, rd); 12

¥ 13
return 0K; 14

¥ 15

Key Elements

m Naming Convention: C62zMPYSU_SC5_UR16_SR32(. . .)
m Behavior Specification: int32_t rd = ra * 7b;

m Result on Parent's Stack: C62z_Result_t * result " Life time + Scope.
m Return Value: 0k ™ Instruction does not require special processing.
mw Early Termination, Wait-for-Interrupt, Error Condition etc..

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 14 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block. ey 1

1
|

sasic biock |
BASIC BLOCK i

e updaed
pC, 1= 0)

BAsxc BLock

m Core and Update Basic Block Pair
for each Target Execute Packet.

I

Per Execute Packet
Condition
(€T 1= 0)

m Control Flows between Generated IR
Basic Blocks.

Early Terminatio

-«

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 15 /26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block.

m Core and Update Basic Block Pair
for each Target Execute Packet.

m Control Flows between Generated IR
Basic Blocks.

Core Basic Blocks

C1 Stack Memory Allocation
Instructions for ISA Results.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

ENTRY
BASIC BLOCK

UPDATE H
BASIC BLOCK | |
C Updated '
(RPC; 1= 0)

RETURN
BASIC BLOCK

Per Execute Packet

ORM & - &

January 25th, 2013

15 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block.

m Core and Update Basic Block Pair
for each Target Execute Packet.

m Control Flows between Generated IR
Basic Blocks.

Core Basic Blocks

C1 Stack Memory Allocation
Instructions for ISA Results.

C2 Calls to ISA Behavior in LLVM-IR.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

ENTRY
BASIC BLOCK

|
BasiC slock !

"1

0

Per Execute Packet

BASIC BLOCK

e updaed
pC, 1= 0)

BAS!C BLock

Condition
(€Tct

Early Terminatio

-«

ET, = Call @ISA(..., &R,);
ET, = Call @ISA(..., &R,);

ET, = Call @ISA(..., &R,);

January 25th, 2013

15 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block.

m Core and Update Basic Block Pair
for each Target Execute Packet.

m Control Flows between Generated IR
Basic Blocks.

Core Basic Blocks

C1 Stack Memory Allocation
Instructions for ISA Results.

C2 Calls to ISA Behavior in LLVM-IR.

C3 No Delay Slots ™ Immediate Update
Delay Slots ™ Buffered Update;
Handles Data Hazards + Side-Effects

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

ENTRY
BASIC BLOCK

UPDATE H
BASIC BLOCK | |
C Updated '
(RPC; 1= 0)

RETURN
BASIC BLOCK

Per Execute Packet

ET, = Call @ISA(..., &R,);
ET, = Call @ISA(..., &R,);

ET, = Call @ISA(..., &R,);

Immed(R;); or Buffer(R,);
Immed(R,); or Buffer(R,);

Immed(R,); or Buffer(R,);

January 25th, 2013

15 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block.

m Core and Update Basic Block Pair
for each Target Execute Packet.

m Control Flows between Generated IR
Basic Blocks.

Core Basic Blocks

C1 Stack Memory Allocation
Instructions for ISA Results.

C2 Calls to ISA Behavior in LLVM-IR.

C3 No Delay Slots ™ Immediate Update
Delay Slots ™ Buffered Update;
Handles Data Hazards + Side-Effects

C4 Instructions for testing ISA Return
Values e.g. Early Termination.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

ENTRY
BASIC BLOCK

ET, = Call @ISA(..., &R,);
ET, = Call @ISA(..., &R,);

ET, = Call @ISA,

I o,
Immed(R,); or Buffer(R,

Immed(R,); or Buffer(R,);

Per Execute Packet

ETc = ET, | ET, | ... | ET,
Branch(ETc != 0, BBger, BBusoare);

UPDATE H
(BASIC smcx} i @

PC Updated
(RPCr1= 0)
RETURN

BASIC BLOCK

January 25th, 2013

15 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block.

m Core and Update Basic Block Pair
for each Target Execute Packet.

m Control Flows between Generated IR
Basic Blocks.

Core Basic Blocks

C1 Stack Memory Allocation
Instructions for ISA Results.

C2 Calls to ISA Behavior in LLVM-IR.

C3 No Delay Slots ™ Immediate Update
Delay Slots ™ Buffered Update;
Handles Data Hazards + Side-Effects

C4 Instructions for testing ISA Return
Values e.g. Early Termination.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

ENTRY
BASIC BLOCK

1
H
CORE i
BASIC BLOCK !

o

ET, = Call @ISA(...,
ET, = Call @ISA(...,

Immed(R,); or Buffer(R,);

Per Execute Packet

ETc = ET, | ET,
Branch(ETc != 0, BBrer, BBypoare);

= ET,

UPDATE {
BASIC BLOCK } i @
Ji ;

PC Updated
(RPCr1= 0)

RETURN
BASIC BLOCK

Ve

Call @IncPC();
Call @IncCycles();
RPC; = Call @UpdateRegs();

Update Basic Blocks

Ul Update Processor State

Registers including PC, Cycles
and Buffered Results.

January 25th, 2013

15 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Intermediate Code Generation

IR Function Composition

m One Entry / Return Basic Block for
each Target Basic Block. | ooy 1

CORE
BASIC BLOCK

©
(©)
(E_;J%v § © Immed(R,); or Buffer(R,);
(©}
(©)
(O]

ET, = Call @ISA(..., &R,);
ET, = Call @ISA(..., &R,);

m Core and Update Basic Block Pair
for each Target Execute Packet.

UPDATE

ETc = ET, | ET, | ... | ET,
BASIC BLOCK | |

Branch(ETc != 0, BBger, BBupoare);

Per Execute Packet

m Control Flows between Generated IR : i
Basic Blocks. LU

[Gileincec;
Call @IncCycles();
RPC; = Call @UpdateRegs();

RETURN

. BASIC BLOCK
Core Basic Blocks

C1 Stack Memory Allocation

Instructions for ISA Results. Update Basic Blocks

C2 Calls to ISA Behavior in LLVM-IR.

C3 No Delay Slots ™ Immediate Update
Delay Slots ™ Buffered Update;
Handles Data Hazards + Side-Effects U2 If RPCy # 0 = Branch Taken:

C4 Instructions for testing ISA Return Pass control to Software Kernel
Values e.g. Early Termination. Handles Nested Branches

Branch(RPC; != 0, BByer, BBcore);

Ul Update Processor State
Registers including PC, Cycles
and Buffered Results.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 15 /26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space

m All Memory Accesses are in Target Address Space; Thanks to
Hardware-Assisted Memory Virtualization.

m Native Binary Size > VLIW Binary Size ™ Extended Target Address Space.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 16 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space

m All Memory Accesses are in Target Address Space; Thanks to
Hardware-Assisted Memory Virtualization.

m Native Binary Size > VLIW Binary Size ™ Extended Target Address Space.

SystemC

Simulation Flow Address Space

_text

Initialize Platform. date

_rodata

VMM
Mapped | | —
Dynamic| | "
Memory | | -

TTY
BLK
DMA
ADC

.stack

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 16 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space

m All Memory Accesses are in Target Address Space; Thanks to
Hardware-Assisted Memory Virtualization.

m Native Binary Size > VLIW Binary Size ™ Extended Target Address Space.

SystemC Extended Target prev
. . Address Space Address Space ative
Simulation Flow ,

Initialize Platform.
Load Bootstrap Code +
. . W BLK
Native Binary. iaeeed] DA
Memory
B
[
& Native Binary

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 16 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space

m All Memory Accesses are in Target Address Space; Thanks to
Hardware-Assisted Memory Virtualization.

m Native Binary Size > VLIW Binary Size ™ Extended Target Address Space.

SystemC Extended Target

Simulation FlOW Address Space 'Address Space
Initialize Platform.
Load Bootstrap Code + T
Native Binary. iaeeed] =

Memory

Boot KVM CPUs. =
oo || /
—

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 16 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space

m All Memory Accesses are in Target Address Space; Thanks to

Hardware-Assisted Memory Virtualization.

m Native Binary Size > VLIW Binary Size ™ Extended Target Address Space.

SystemC

Simulation Flow Address Space

/| [bsst

Extended Target
Address Space

_text-t

.stack-t

BLK

Target VLIW
Binary

DMA

.data /
Initialize Platform. Lot
Load Bootstrap Code + —
Native Binary. zzpe]
Memor
Boot KVM CPUs.
Load Target VLIW Binary.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013

M

fockcn] ||

January 25t 2013 16/ 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Native Memory Accesses using Memory Virtualization

Extended Target Address Space

m All Memory Accesses are in Target Address Space; Thanks to
Hardware-Assisted Memory Virtualization.

m Native Binary Size > VLIW Binary Size ™ Extended Target Address Space.

SystemC Extended Target

Simulation FlOW Address Space Address Space

Initialize Platform.
Load Bootstrap Code + —
Native Binary. zzpe]
Memory

Boot KVM CPUs.
Load Target VLIW Binary.
Continue Simulation.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 16 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Multiple Code Generation/Translation Levels

m Each Execute Packet ™ Slower Simulation (Switching in Software Kernel)

ENTRY
7| BASIC BLOCK
CORE
BASIC BLOCK
Software
Kernel LW

ADDRESS

MAPPINGS RETURN

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 17 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Multiple Code Generation/Translation Levels

m Each Execute Packet ™ Slower Simulation (Switching in Software Kernel)

m Basic Blocks Only ™ Dynamic Translation Support ? (Indirect Branches)

Kernel

ADDRESS
MAPPINGS

ENTRY
7| BASIC BLOCK
CORE
BASIC BLOCK

Mian-Muhammad Hamayun (TIMA Laboratory)

Indirect Brgnches
to Non-Startup
Execute Pagkets?

Kernel

ADDRESS
MAPPINGS

ENTRY
| BAsIC BLOCK

H
H

CORE i
BASIC BLOCK i

i

H

(H
H

H

H

H

H

H

H

H

H

H

H

H

i

N x Execute Packet
"‘L,

UPDATE
BASIC BLOCK

Early Terminatiol

PC Updated H
(RPC; 1= 0) \J

ASPDAC 2013

A
RETURN
BASIC BLOCK

January 25th, 2013

17 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Multiple Code Generation/Translation Levels

Which Translation Level and Why / Why Not ?

m Each Execute Packet m Slower Simulation (Switching in Software Kernel)
m Basic Blocks Only ™ Dynamic Translation Support ? (Indirect Branches)
m Basic Blocks + Execute Packets ™ Fast Simulation but Redundant Code.

ENTRY
N BASIC BLOCK

ENTRY
BASIC BLOCK

CORE
BASIC BLOCK
B
iy UPDATE
5 BASIC BLOCK

Indirect Branches
to Non-Startup
Execute|Packets

Y
CORE
BASIC BLOCK
E UPDATE
BASIC BLOCK

PC Updated Y
(RPC, 1= 0)

Condition
= 0)

N x Execute Packet
’1

Early Termination
Condition
(ETc !

i

Early Terminatio:

ADDRESS

RETURN MAPPINGS RETURN
BASIC BLOCK BASIC BLOCK

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 17 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Multiple Code Generation/Translation Levels

Code Generation Modes — Summary

l Generation Mode

“ Execute Packets [Basic Blocks [Hybrid (BB+EP)]

Simulation Speed Slow Medium Fast
Simulator Size Medium Small Large
Dynamic Translations Not Required Required Not Required
H/W Synchronization Per EP Per EP/BB Per EP/BB
Self Modifying Code Support No Yes No

Mian-Muhammad Hamayun (TIMA Laboratory)

ASPDAC 2013

January 25th

, 2013

18 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Multiple Code Generation/Translation Levels

Code Generation Modes — Summary

l Generation Mode “ Execute Packets [Basic Blocks [Hybrid (BB+EP)]

Simulation Speed Slow Medium Fast
Simulator Size Medium Small Large
Dynamic Translations Not Required Required Not Required
H/W Synchronization Per EP Per EP/BB Per EP/BB
Self Modifying Code Support No Yes No

Mian-Muhammad Hamayun (TIMA Laboratory)

ASPDAC 2013

January 25th

, 2013

18 / 26

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV

Multiple Code Generation/Translation Levels

Code Generation Modes — Summary

l Generation Mode

[[Execute Packets [Basic Blocks | Hybrid (BB+EP) |

Simulation Speed Slow Medium Fast
Simulator Size Medium Small Large
Dynamic Translations Not Required Required Not Required
H/W Synchronization Per EP Per EP/BB Per EP/BB
Self Modifying Code Support No Yes No

Mian-Muhammad Hamayun (TIMA Laboratory)

ASPDAC 2013

January 25th

, 2013

18 / 26

Introduction and Motivation

Problem Definition — Simulation of VLIW on Native Machines

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV
Experiments and Results

Summary and Conclusions

Experiments and Results

Experimental Setup and Benchmarks

Test Kernels — Control and Compute Intensive

m Fibonacci Index — Recursive m IDCT Block Decoding

m Factorial Index — Recursive

Benchmark / Reference Simulators

m Tl C6x Full Cycle Accurate simulator (T/-Céx-FCA)
m Tl C6x Device Functional Cycle Accurate simulator (T/-C6x-DFCA)

Modest Host Machine for Experimentation

m Pentium(R) Dual-Core CPU E5300 (2.60 GHz, 2M Cache) + 2 GB RAM.
m Linux version 2.6.32-37 32-bit (SMP)

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 20 /26

Experiments and Results

Experimental Results — Fibonacci Index

Simulation Time (Seconds)

1000

100

ExecutePacket (EP) —+—
Hybrid (BB+EP) --->¢--:

Hybrid+LMaps+Opt --- 3% Ko)
Hybrid+Hash+Opt o}
TI-C6x-DFCA Lo

TI-C6x-FCA ---O - RS) ®

0.1

o
2

0.001

0.0001

1 1 1 1 1 1
3456 7 8 910111213 14151617 18 19 20 21 22 23 24 25 26 27 28 29 30
Fibonacci Index

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th, 2013

21 /26

Experimental Results

Experiments and Results

ExecutePacket (EP) —+—
Hybrid (BB+EP) --->¢---
Hybrid+LMaps+Opt
1000 - Hybrid+Hash+Opt
TI-Céx-DFCA

TI-C6x-FCA -~

Simulation Time (Seconds)

Simulation Time (Seconds)

1 2 3 4 5 6 7 8

Mian-Muhammad Hamayun (TIMA Laboratory)

9 10 11 12 13 14
Factorial Index

ASPDAC 2013

100

ExecutePacket (EP) —+—
Hybrid (BB+EP) --¢--
Hybrid+LMaps+Opt -+~ %-

Hybrid+Hash+Opt -E}-
TI-C6x-DFCA - If
TI-C6x-FCA --@--

5 10 15 20 25 30 35 40
IDCT -- Number of Blocks

January 25t 2013 22 /26

Experiments and Results

Experimental Results — Summary

1000

100

o1

Simulation Time (Seconds)

0.001

0.0001

DirectHos! s

Static-BT

Fibonacci(index=30) Factorial(index=14,100K) IDCT(Blocks=40)
Benchmark Application

Average Speedups/Slowdowns of SBT-Based Simulation

L Cox-FCA | C6x-DFCA Native DirectHost
Application
Speedup Speedup Slowdown | Slowdown
Fibonacci 159x 39x 90x 101x
Factorial 132x 33x 205x 220x
IDCT 129x 31x 133x 141x
Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th, 2013

23 /26

Introduction and Motivation

Problem Definition — Simulation of VLIW on Native Machines

Proposed Solution — Native Simulation of VLIW ISA using SBT and HAV
B Experiments and Results

Summary and Conclusions

Summary and Conclusions

Final Remarks

Summary

m A flow for Static Translation of VLIW Binaries to Native Code.
m Functionally Identical to TI Simulators; Verified by Trace Comparison.

m Profits from LLVM Infrastructure Components ™ Optimized Native Code.

Limitation and Overhead

m Completely Static ™ Does not support Basic Block only simulation.

m Hybrid Translation mode ™ Redundancy in Translated Code.

Future Directions

m Automatic Generation of VLIW Instruction Decoders and ISA Behavior.
m Performance Estimation of Complex Benchmark Applications.
m Reducing the VLIW Architecture Modeling Overheads in Translated Code.

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 25 /26

Questions & Answers

Thanks for Your Attention !
Questions ?

Mian-Muhammad Hamayun (TIMA Laboratory) ASPDAC 2013 January 25th 2013 26 / 26

	Introduction and Motivation
	Problem Definition – Simulation of VLIW on Native Machines
	Proposed Solution – Native Simulation of VLIW ISA using SBT and HAV
	Experiments and Results
	Summary and Conclusions

