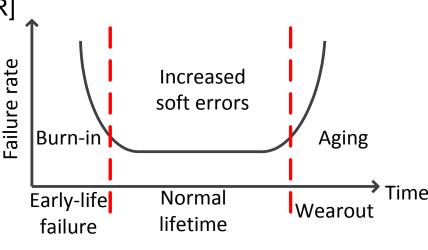


Statistical Analysis of BTI in the Presence of Processinduced Voltage and Temperature Variations

Farshad Firouzi, Saman Kiamehr, Mehdi. B. Tahoori

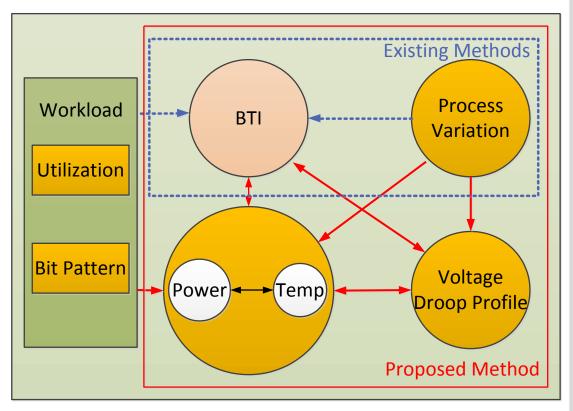
INSTITUTE OF COMPUTER ENGINEERING (ITEC) - CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)


Motivation

With CMOS scaling

- Transient errors [Baumann05TDMR]
- Aging [Agostinelli05IRPS]
 - Bias Temperature Instability (BTI)
- Process variation [ITRS]

- Annoying computer crashes
- Loss of data and services
- Financial and productivity losses
- Loss of human life



[Mitra11ETCAS]

Motivation

- Variation sources
 - Process Variation
 - Run-time
 - Aging
 - Voltage
 - Temperature

- All these phenomena are tightly coupled
- To accurately predict timing
 - Combined effect of all phenomena on timing has to be considered.

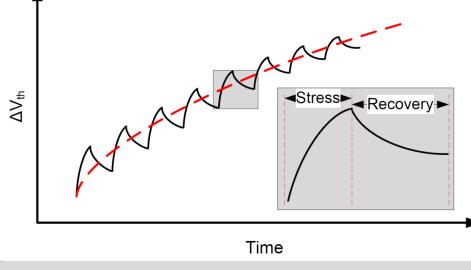
Purpose

- Voltage, temperature, and aging aware Statistical Static Timing Analysis (SSTA)
 - Combined effect of PVT variations and BTI-induced delay degradation
- Probabilistic method to obtain
 - Thermal and voltage droop profiles in the presence of process variation
 - Effect of BTI-induced threshold voltage shift is considered
- Analytical technique for estimating
 - BTI effect under process variations
 - Voltage-temperature variations → process and workload variations

- Related work
- Preliminaries and models
- Proposed method
- Experimental results
- Summary and conclusion

Related work

- [Wang 08CICC]: New V_{th} model
 - To capture variation of BTI in presence of process variation
- [Lu09DAC]: Comprehensive reliability framework
 - Considering both BTI and process variation
- [Siddiqua11ISQED]: Effect of BTI and process variation
 - Register file and Kogge-Stone adder
- [Han11ICCAD]: Transistor level simulation using Monte-Carlo
 - Considering aging and process variation
- Effect of temperature and voltage-droop is neglected
 - Significant inaccuracy in BTI estimation
 - Considerable error in BTI-induced delay degradation


Related work

- Preliminaries and models
 - Bias Temperature Instability (BTI)
 - Process variation
- Proposed method
- Experimental results
- Summary and conclusion

BTI

- Bias Temperature Instability (BTI)
 - NBTI: Negative BTI → PMOS threshold ↑
 - PBTI: Positive BTI \rightarrow NMOS threshold \uparrow
- Two phases:
 - Stress $\rightarrow V_{TH}^{\uparrow}$
 - PMOS (NMOS) transistor is under negative (positive) bias
 - **Recovery** $\rightarrow V_{TH}\downarrow$
 - When the bias is removed

1/25/2013

BTI

Modelling [Bhardwaj06CICC]:

$$\Delta V_{th}(\delta, T, V_{dd}, t) = \left(\frac{\sqrt{K_v^2 \delta T_{clk}}}{1 - \beta(t)^{1/2n}}\right)^{2n}$$

n . .

$$K_v = f(V_{dd} - V_{th}, T)$$

- δ: Duty cycle
- T: Temperature
- *V_{dd}*: Gate supply voltage
- *V_{th}* : Transistor threshold voltage
- Other parameters:
 - Technology and fabrication dependent constants

BTI

Intrinsic variation

- Fluctuation of generated BTI-induced interface traps [Han10ICCAD]
 - Similar to random dopant fluctuation

$$\sigma(\Delta V_{th}(t)) = \sqrt{\frac{K}{L.W}} \mu(\Delta V_{th}(t))$$

- L: gate length
- W: gate width
- $\mu(\Delta V_{th}(t))$: mean of threshold voltage change
- K: constant

Related work

- Preliminaries and models
 - BTI
 - Process variation
- Proposed method
- Experimental results
- Summary and conclusion

Process variation

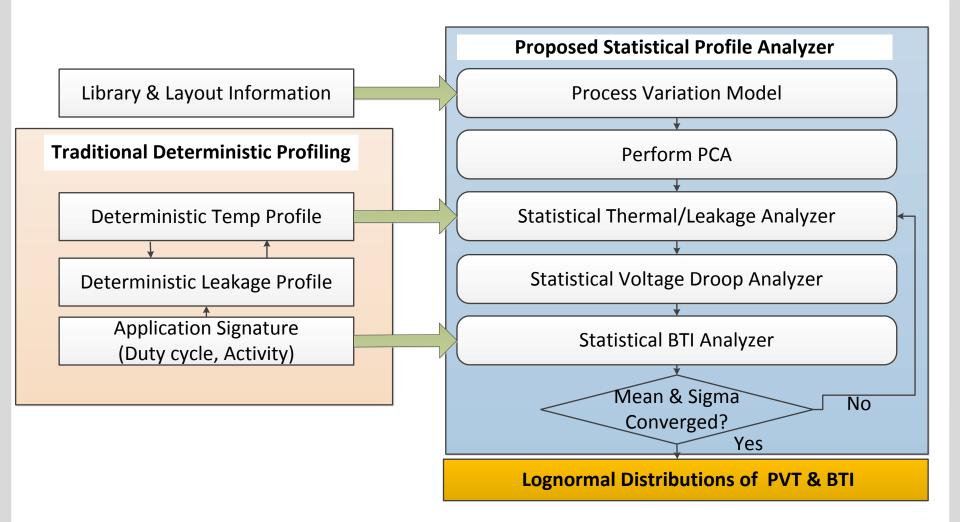
Variation of physical parameters [Xiong07CAD]

$$\Delta P_{total} = \Delta P_{d2d} + \Delta P_{cor} + \Delta P_{rand}$$

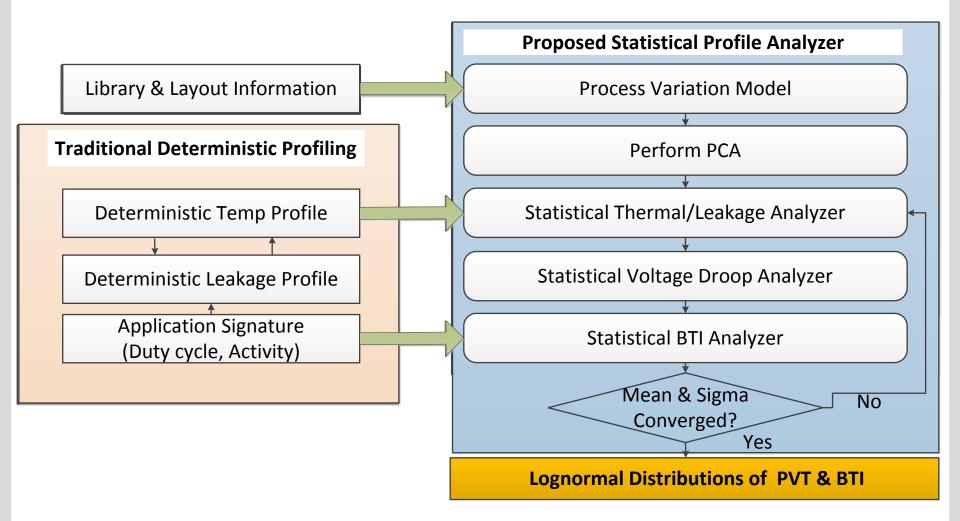
- ΔP_{d2d} : die to die variation
- ΔP_{cor} : spatially correlated variation
- ΔP_{rand} : independent random variation
- To keep track of correlations
 - Principal Component Analysis (PCA) is used

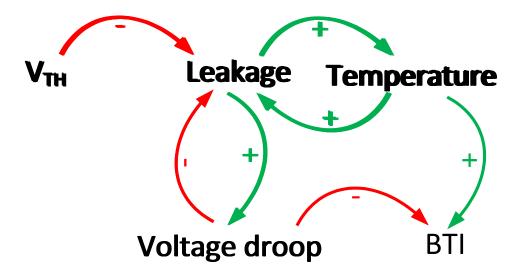
$$\Delta L_i = \sum_{j=1}^n \alpha_{j,i} P C_j + \mu_i$$

• $\alpha_{j,i}$:depends on covariance matrix


• μ_i : mean value of ΔL_i

- Related work
- Preliminaries and models
- Proposed method
 - Statistical profiling
 - Runtime variation aware SSTA
- Experimental results
- Summary and conclusion

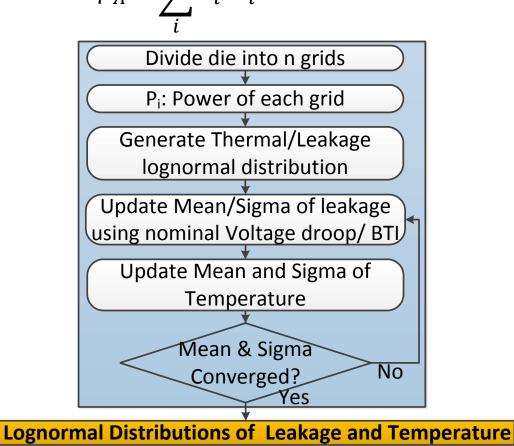

Overall Profiling flow



PCA is used

- To keep track of the correlations
- By converting spatial correlated variables
 - Set of uncorrelated orthogonal variables

Step2: Statistical Thermal Profile



Leakage and temperature: lognormal distributions

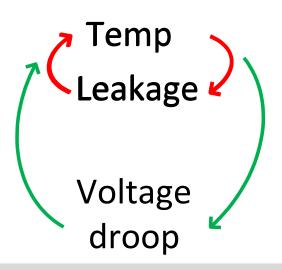
$$L_A = \exp(A)$$
, $A = \mu_A + \sum_i^n a_i X_i$

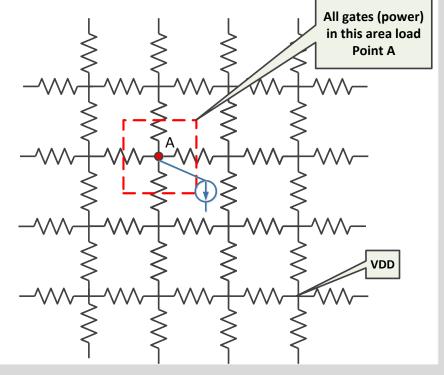
Convergence

Less than 10 iteration

Step2: Statistical Thermal Profile

Leakage $P_{leakage} = P_{leakage}^{nomin\,al} (1 + \alpha_1 T + \alpha_2 T^2) (1 + \alpha_3 V + \alpha_4 V^2)$ $(1 + \alpha_5 \Delta V_{th} + \alpha_6 \Delta V_{th}^2) \exp(\beta \Delta L)$ $P_{leakage}^{nomin\,al}$ nominal leakage without process variation at $T=0^{\circ}C$ fitting parameter α_i Verified by SPICE simulation ($R^2 > 0.996$) For a 7-stage ring oscillator in 45 nm technology Temperature $T_i = \sum \alpha_{ij} P_j + \alpha_{im} P_m$


 P_j power of grid j
 P_m chip to ambient removing power



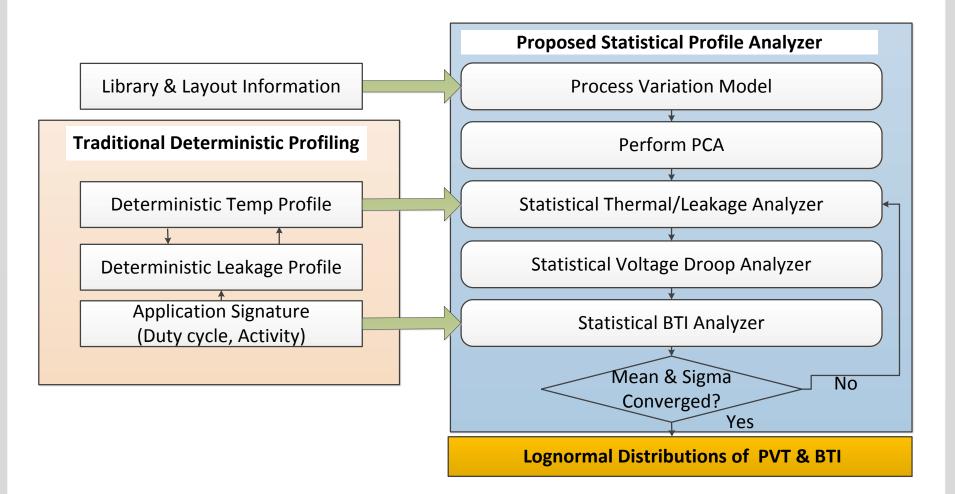
Step3: Statistical voltage droop profile

$$V = G^{-1}I$$

- New flow consists of two nested loops
 - Temperature-leakage loop
 - Outer loop to find lognormal distribution of voltage droop
- Convergence
 - Less than 10 iterations

Statistical Analysis of BTI in the Presence of Process-induced Voltage and Temperature Variations

Step4: Statistical BTI Analysis


- BTI effect strongly depends
 - Thermal profile & Voltage droop profile
- BTI affects leakage by V_{th} change
 - Temperature &Voltage droop
- BTI is modeled as lognormal distribution
- BTI profiling consists of three nested loops
 - Two inner nested loops for extracting
 - leakage, thermal, and voltage droop profiles
 - The outer loop for obtaining the BTI profile
- Convergence
 - Less than 10 iteration

Temp Leakage Voltage droop

Overall flow

Time Scale and Workload Variation

- Different variations have different time scales
 - Short term effects (ms)
 - temperature and voltage droop variations
 - Long term effects
 - BTI
 - Function of duty cycle \rightarrow workload dependent
- Operational lifetime of the chip
 - is divided into some equal time intervals
- For each of these time intervals
 - PVT/BTI profiles are calculated
 - BTI is estimated based on previous interval
 - Temperature, voltage droop, and duty cycle

- Related work
- Preliminaries and models
- Proposed method
 - Statistical profiling
 - Runtime variation aware SSTA
- Experimental results
- Summary and conclusion

Aging-aware timing analysis

Delay of the gate at time t can be expressed

$$D(t) = D_0 + \Delta D_0 + \Delta D_{BTI}(t)$$

Suppose the gate length is the only source of variation $\Delta D(t) = \Delta D_0 + \Delta D_{BTI}(t)$

$$= \left(\frac{\partial D}{\partial L}\Delta L + \frac{\partial D}{\partial V_{th}}\frac{\partial V_{th}}{\partial L}\Delta L\right) + \left(\frac{\partial D}{\partial V_{th}}\left(\Delta V_{th}^{BTI}(t) + \frac{\partial V_{th}^{BTI}(t)}{\partial L}\Delta L\right)\right)$$

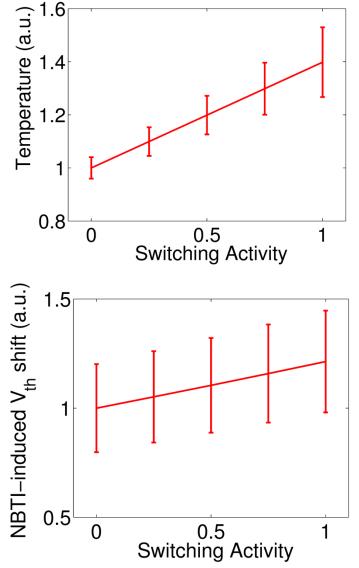
According to [Chen09ICCAD] $\Delta D_0 = \alpha . \Delta PP + \beta . \Delta T + \gamma . \Delta V$

• ΔD_{BTI} can be written

$$\Delta D_{BTI}(t) = A_{BTI} \delta^n t^n (1 + \alpha_{BTI} \Delta L + \beta_{BTI} \Delta T + \gamma_{BTI} \Delta V).$$

- Related work
- Preliminaries and models
- Proposed method
- Experimental results
- Summary and conclusion

Experimental setup


- Circuits
 - ISCAS85
 - Illinois Verilog Model (IVM) processor
- Synthesized by Synopsys Design Compiler
 - Using Nangate 45 nm library
- Total amount of variation
 - $\frac{3\sigma}{\mu} = 20\%$
- Sensitivity of leakage and delay to different parameters
 - SPICE simulation

Workload variation

- Different workload
 - Dynamic power
 - Temperature
 - Duty cycle
 - BTI

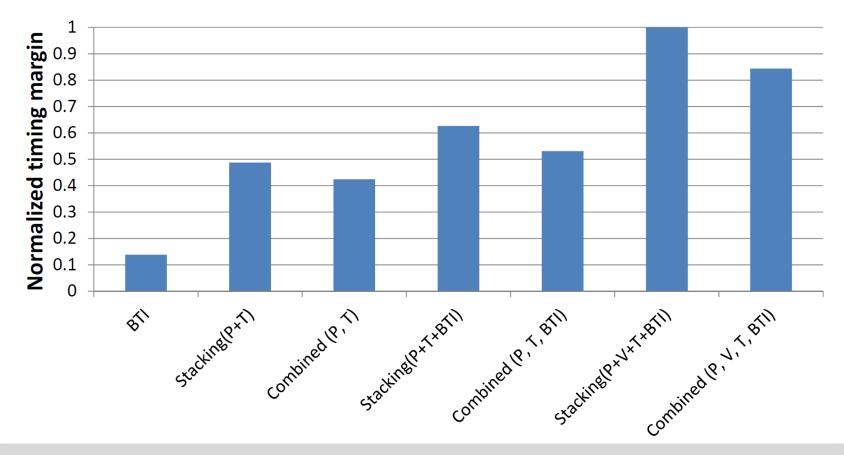
- Workload in 7-stage inverter chain
 - Up to 40% temperature
 - Up to 15% NBTI-induced ΔV_{th}

27

1/25/2013

Statistical thermal/BTI profiling

- Error of incomplete consideration of
 - Interdependence among PVT and BTI
 - Compared with +T + V + B
 - For a 7-stage inverter chain


	Temp _{max}	μ_{Temp}	σ_{Temp}	$\mu_{\Delta Vth}$	$\sigma_{\Delta Vth}$
+T - V - B	89.23%	2.38%	67.00%	8.54%	14.54%
+T + V - B	14.09%	0.50%	13.60%	0.00%	1.03%
+T - V + B	38.07%	1.61%	38.40%	8.54%	12.14%

- T: temp
- V: voltage droop
- B: BTI
- +/- : consideration/ignorance

Timing margins

- Simple margin addition method for *ALU* of *IVM*
 - Results in about 16% overestimation of timing margin

Proposed VTA-SSTA accuracy/runtime

Previous work

Effect of temperature/voltage droop on BTI is ignored

100,000 Monte-Carlo samples

Circuit	Monte-Carlo			Previous work		Proposed method		
	μ	σ	Runtime (sec)	μ	σ	μ	σ	Runtime improvement
C2670	157.21	17.47	374	1.28%	12.95%	0.20%	5.15%	137x
C3540	456.02	45.39	1074	1.22%	12.51%	0.69%	6.65%	205x
C5315	216.48	23.07	1446	1.24%	12.92%	0.34%	4.37%	540x
C7552	157.59	17.14	2906	1.29%	13.26%	0.34%	3.76%	681x
S13207	878.66	81.79	10173	1.23%	11.31%	0.41%	4.53%	1027x
S35932	238.42	21.41	51407	1.41%	14.01%	0.43%	5.62%	1570x
S38417	817.04	90.43	48730	1.35%	13.04%	0.37%	4.51%	1315x
Average				1.25%	12.25%	0.38%	4.85%	576x

- Related work
- Preliminaries and models
- Proposed method
- Experimental results
- Summary and conclusion

Summary and conclusion

- Analytical methodology
 - Model the correlation between PVT and BTI-induced aging
- Voltage, temperature, and aging aware
 - Statistical Static Timing Analysis (VTA-SSTA)
- Neglecting interaction among different sources of variation
 - Considerable error in thermal-voltage profiling
 - Unnecessary design margin (16% overdesign)
 - Performance loss

Thanks for your attention

Any question?