An Adaptive Current-Threshold Determination for IDDQ Testing Based on Bayesian Process Parameter Estimation

Michihiro Shintani and Takashi Sato

Kyoto University, Japan

ASP-DAC'13 @ Pacifico Yokohama

- Background and objective
- IDDQ testing pass/fail threshold determination
 - Two concepts
 - Four steps for realization
- Experimental results
- Conclusion

IDDQ testing in advanced process

- Increasing relative process variation
- Setting pass/fail threshold for IDDQ testing has become difficult
 - Inappropriate threshold results in yield loss and test escape

Objective of our work

- Propose a novel IDDQ threshold determination
- Obtain per-chip, tighter pass/fail thresholds for more accurate IDDQ testing
- Achieve low yield loss and test escape

Key concept 1: two stage approach

Estimate global parameter of a chip using IDDQ signature based on Bayes' theorem[Shintani, VTS'12]

 2) Determine thresholds for each chip based on the estimated global parameters

Issue of key concept 1

When a chip has faults...,

Global parameter estimation will be degraded
 Also current-threshold determination will be degraded

Parameter estimation by using faulty signature

Wrong parameter estimation

Wrong threshold determination → Yield loss and test escape

Test pattern ID

Key concept 2: fault-free signature calculation ⁶

 For the accurate threshold determination, calculate a FF (fault-free) signature through simulated annealing

Then, estimate global parameter using the FF signature

Proposed flow

(1) Statistical leakage library preparation 8

- Calculate statistical leakage distribution
 - For all standard cells
 - For all input states
 - At all segments

(2) Chip-level current calculation

- Calculate statistical leakage distribution of total leakage using the leakage library
 - For all test patterns
 - At all segments
- Chip-level leakage = Σ (leakage of cells)

Statistical

leakage lib.

(3) Fault-free signature calculation (1/2)¹⁰

- Calculate Fault-sensitization vector (FSV) and a fault size in simulated annealing
 - Element of FSV = 0 (if non-sensitized) 1 (if sensitized) As measured
 - IDDQ value
 Fault-free signature (Unknown truth)

 FSV
 0000010000100010001000100010001000
 - Fault size = IDDQ_{Ave_FSV=1} IDDQ_{Ave_FSV=0}

→ FF current = measured IDDQ current – fault size

(3) Fault-free signature calculation (2/2)¹¹

- In simulated annealing:
 - **1)** Generate FSV randomly and calculate FF signature
 - 2) Estimate global parameter using the FF signature through Bayesian parameter estimation
 - 3) Evaluate cost function: convergence of estimation

(4) Current-threshold determination ¹²

- Calculate statistical leakage current distribution considering global and local variations by a weighted sum
- Determine current-threshold

 On an assumed virtual wafer, evaluate test accuracy with changing pass/fail threshold from 1σ to 9σ

Analyze

- Yield loss and test escape
- Result of fault-free signature calculation
- Relationship between current-threshold and measured IDDQ signature
- Detected leakage fault size

Simulation setup (2/3)

Target circuit

- ISCAS'89 benchmark circuit: s38584
- Test pattern set
 - Pseudo stuck-at model
 - # of test patterns: 49
 - Test coverage: 100%
- Library set
 - 65nm commercial library
 - Global & local variation
 - Threshold voltages of pMOS and nMOS
 ΔVthn, ΔVthp

Simulation setup (3/3)

- 17x17(=289) chips on the wafer
- Yield 80%: 231 good chips, 58 bad chips
 - Single stuck-at fault is randomly inserted
 - Leakage fault size (μA) follows: 0.6 exp (-0.6λ)
- Distributions on the wafer
 ΔVthn ΔVthp

IDDQ currents distribution for 1st test pattern

Result of test accuracy

- Best performance is achieved at 8σ
 - Lowest yield loss and test escape
 - Yield loss: 0%, test escape: 3%

Example of fault-free signature calculation ¹⁷

- Faults are completely identified
- Completely coincident with correct FF signature

Examples of current-threshold

- Chips are successfully classified
- Our technique can applicable to the case:
 - Fault-free > faulty

Histogram of escaped size w/o FF signature ¹⁹

 Without fault-free signature calculation, almost all faults can not be detected

Histogram of escaped size with FF signature ²⁰

Detect faults whose size, down to 16% of the nominal IDDQ current

Conclusion

- Propose a novel IDDQ testing pass/fail threshold determination
 - Based on Bayesian global parameter estimation using IDDQ signature
 - Calculate fault-free signature
- Experimental results show:
 - Calculate the fault-free signature correctly
 - Achieve best performance at 8σ
 - Yield loss: 0%, test escape: 3%
 - Detect small leakage defect
 - 16% of nominal leakage at 8σ

Thank you for your attention

