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Cyber-Physical Systems 

Q:What is a cyber-physical system? 

A: a system with integrations of computation and physical processes 
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Smart Car 



Cyber-Physical Systems 

Q:What is a cyber-physical system? 

A: a system with integrations of computation and physical processes 

Smart Bridge 

Smart Grid 
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Cyber-Physical Systems 

Q:What is a cyber-physical system? 

A: a system with integrations of computation and physical processes 

ASIMO, Service Robot 
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Cyber-Physical Systems 

Q:What is a cyber-physical system? 

A: a system with integrations of computation and physical processes 

Pacemaker 
Infusion Pump 

Medical Ventilator 
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CPS Design and Validation in Medical Area 
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 Real time constraint 



Digital Mockup of Human Lung 

• We run lung model on a FPGA in real time 

• Advantages: 
– Configurability: adjust parameters of the lung (child and old man) 

– Observability: watch pressure at any point in the lung 

– Time-controllability: move time of the lung model back or forth 

Digital 
Connections 

Digital Mockup 

References: 
• B. Miller, F. Vahid, T. Givargis, “MEDS: Mockup Electronic Data Sheets for Automated Testing of 

Cyber-Physical Systems Using Digital Mockup,” Design Automation and Test in Europe, 2012 
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Problem Statement 

• Problem: Controllability of lung models and digital mockups in general 

• Constraint: The lung model runs in real time => it can’t be suspended 

• Goal: non-intrusive debugging and time-controllability 

• Time-controllability: manipulate temporal state (i.e., time) of the lung model 

• Non-intrusive debugging: not change timing behavior of a digital mockup 

• How to do it: 

• We use checkpoints: 
• The FPGA’s internal state (contents in RAM or reg.) at a certain clock cycle 

• We manipulate checkpoints through 
1. Instrumenting Secondary Storage (Memory) 

2. Developing Compression Scheme 
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Testing and Debugging Environment 
Dual Processor System 

The digital mockup continuously sends checkpoints to the 
host machine 

Microblaze 

Lung IF Transmit IF Receive IF USB Checkpoint IF 

Lung Model 
Transmitter 

Receiver 

Digital Mockup 

FPGA (Xilinx Virtex 5) 

Digital Bypass Link 

Checkpoint Checkpoint Checkpoint 

Instrument secondary storage for non-intrusive debugging 

Compress checkpoints for saving bandwidth 

More checkpoints: 
• Long monitor window 
• Fine time resolution 

10 



• Motivation 

• Problem Statement 

• Approaches 

• Weibel Lung Model 

• Design Instrumentation 

• Compression Scheme 

• Experimental Results 

• Conclusions 

Outline 

11 



Weibel Lung Model: Equations 

References: 
• P. Barbini, et al., “A Dynamic Morphometric Model of the Normal Lung for Studying Expiratory 

Flow Limitation in Mechanical Ventilation,” Annals of Biomedical Engineering, Vol. 33, No. 4, May 2005 
• P. Barbini, et al., “A Simulation Study of Expiratory Flow Limitation in Obstructive Patients during 

Mechanical Ventilation,” Annals of Biomedical Engineering, Vol. 34, No. 12, December 2006 
• Electrical circuit for a bifurcating airway (http://www.physiome.org) 

ODEs:  

Pa1 = Va/Com_a  

Pinlet = (Finlet * Ra1) + Pa1  

d(Va)/dt = Finlet - Fa1  

d(Fa1)/dt = (Pa1 - Pa2 -(Fa1 * Ra2))/La  

Pb1 = Vb/Com_b  

Pa2 = (Fbin * Rb1) + Pb1  

Fa1 = Fcin  + Fbin 

d(Fb1)/dt = (Pb1 - Pb2 -(Fb1 * Rb2))/Lb  

d(Vb)/dt = Fbin - Fb1  

Pc1 = Vc/Com_c  

Pa2 = (Fcin * Rc1) + Pc1 

d(Fc1)/dt = (Pc1 - Pc2 -(Fc1 * Rc2))/Lc  

d(Vc)/dt = Fcin - Fc1  

2 levels Weibel Lung Model  

• Weibel Lung Model is similar to RC circuit 
– Pressure  Voltage 

– Flow  Current 

– Volume  Electronic Charges 
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Weibel Lung Model: Mapping 

• Process Element: the processing unit that solves ODEs 

• Thousands of ODEs are compiled into VHDL code by PE 
compiler 

Number of Generation 

1 trachea 

2 bronchi 

3 bronchioles 

4 bronchioles 

PE 

PE 

PE 

PE 

PE 
PE 

Input (flow) 

References: 
• C. Huang, F. Vahid, and T. Givargis, “A custom FPGA processor for physical model differential 

equation solving,” Embedded Systems Letters, 2011 

PE compiler 

Pa1 = Va/Com_a  

Pinlet = (Finlet * Ra1) + Pa1  

d(Va)/dt = Finlet - Fa1  

d(Fa1)/dt = (Pa1 - Pa2 -(Fa1 * Ra2))/La  

Pb1 = Vb/Com_b  

Pa2 = (Fbin * Rb1) + Pb1  

Fa1 = Fcin  + Fbin 

d(Fb1)/dt = (Pb1 - Pb2 -(Fb1 * Rb2))/Lb  

d(Vb)/dt = Fbin - Fb1  

Pc1 = Vc/Com_c  

Pa2 = (Fcin * Rc1) + Pc1 

d(Fc1)/dt = (Pc1 - Pc2 -(Fc1 * Rc2))/Lc  

d(Vc)/dt = Fcin - Fc1  

Pa1 = Va/Com_a  

Pinlet = (Finlet * Ra1) + Pa1  

d(Va)/dt = Finlet - Fa1  

d(Fa1)/dt = (Pa1 - Pa2 -(Fa1 * Ra2))/La  

Pb1 = Vb/Com_b  

Pa2 = (Fbin * Rb1) + Pb1  

Fa1 = Fcin  + Fbin 

d(Fb1)/dt = (Pb1 - Pb2 -(Fb1 * Rb2))/Lb  

d(Vb)/dt = Fbin - Fb1  

Pc1 = Vc/Com_c  

Pa2 = (Fcin * Rc1) + Pc1 

d(Fc1)/dt = (Pc1 - Pc2 -(Fc1 * Rc2))/Lc  

d(Vc)/dt = Fcin - Fc1  
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Design Instrumentation at PE Level 
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Design Instrumentation 
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Note: no copy operation is required 
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Access Timing Diagram 

Primary Memory 

Secondary Memory 

Any write 

Re-synchronize 
Ready 

Access by the original design Access by the debug core 

Access by the Re-synchronization controller 

The primary memory is never accessed by a debug core and 
re-synchronization controller 

Start to read checkpoint 

Finish 

Sync again 

Start to read checkpoint 

Finish 

Sync again 
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Compression Scheme 

• Our compression scheme is application-specific 

• Our compression scheme uses data differencing approach 
– use dirty flag to track dirty data 

• Observations: 
– the values generated by ODE solvers does not change too much over 

time 

– these values are restricted to be within a certain range in the case of lung 
or heart mode 
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How to Encode the Differences 
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How about Dirty Word Tracking (DWT)? 

How about Dirty Nibble Tracking (DNT)? 

7 index bits + 7 unchanged nibble + 1 dirty nibble = Bad deal 

7 index bits + 1 unchanged nibble + 7 dirty nibble = Good deal 

10 index bits + 1 dirty nibble = Not so good, average 

50 index bits + 5 dirty nibble = Not so good 

70 index bits + 7 dirty nibble = Not so good 

How about hybrid encoding method? 
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Hybrid Encoding Method 

Access in the order of column for saving 

index bit and removing unchanged nibbles 
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Idea: pack the words with three dirty nibbles at LSB and 
access the data in the order of columns 



How does Column Accessible Cache Works 
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Where are Column Accessible Caches 
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Distributed CACs and Global CAC 

Global CAC Distributed CACs 
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Intuitively, we’ll have better compression rate when CAC is fully filled with entries 
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Simulation Environment  

Input parameter Possible value 

lung model we4_pe4, we6_pe8  

we8_pe16, we10_pe196 

input pressure -500 ~ 500 mmHg 

input oscillation rate 10 ~ 20 times / minute 

input shape square and sine 

interval between checkpoints 10 ~ 1000 ms 

To explore the benefits of CACs, we build a customized simulator 
that cycle-accurately simulates PEs and their network.  
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Different Approaches for Comparison 

Note: A checkpoint includes not only the differenced data but also 
their index 

Raw No compression 

Deflate Compressed by Deflate 

DWT Dirty Word Tracking 

DNT Dirty Nibble Tracking 

CACs Distributed Column Accessible Cache (CACs) 

GCAC Global Column Accessible Cache (CAC) 
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Experimental Results I 
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• we6_pe8 and 15 times/second are used 

• We can see the data differencing approaches (i.e., CACs, 
GCAC, DWT, and DNT) are much better than general 
compression algorithm in our application 

Average size of checkpoints 
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• The top of green bar shows the percentage that CACs or GCAC 
create smaller checkpoint than DWT-approach 

• Data differencing approaches are good (about 90% saving), yet 
CACs and GCAC are event better (20% more saving) 

Experimental Results II 
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• Line fitting shows the trend 

• Statistically, GCAC yields 
better compression rate when 
cache fill rate is higher 

Experimental Results III 
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FPGA Resource Overhead 

  LUTs LUTs (modified)  Slice Slices(modified) 

BRAM36 0/1 200/2 0 72 

RAM128X32S 100 434 (334%) 31 170 

RAM64X32S 66 319 (383%) 21 112 

RAM32X32S 16 177 (1006%) 4 57 

RAM32X16S 8 119 (1387%) 2 54 

CAC 320 - 87 - 

CAC_32X1 457 - 138 - 

CAC_64X1 476 - 147 - 

CAC_128X1 484 - 144 - 

  LUTs Slices BRAM 

we4_pe4 7317 2832 52 

we4_pe4_D 7779(6%) 3132 52 (0%) 

we4_pe4_DC 8408(15%) 3363 52 (0%) 

we6_pe8 8769 3720 56 

we6_pe8_D 9875(13%) 3841 56 (0%) 

we6_pe8_DC 11235(28%) 4505 56 (0%) 

we8_pe16 12963 4747 64 

we8_pe16_D 14431(11%) 5459 64 (0%) 

we8_pe16_DC 17621(36%) 6656 64 (0%) 

FPGA area of Weibel lung models 

FPGA area overhead of checkpointing 

 and compression engine 

• The area overhead is introduced by non-intrusive monitoring 
and creating checkpoint 

• The overhead is acceptable 
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Conclusions and Future Work 

• Our design instrumentation provides non-intrusive debugging 
– we trade FPGA resource (area) for it 

• Our compression scheme saves 20% more than the basic data 
differencing technique 

• We will apply our technique to High-level CPS platform for 
real-time debugging and monitoring 

Xgrid 
 

BRAM 

PEs 
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Different Approaches for Comparison 

Raw=∑(NumberPEWidth + PEDataRAMSize) 
Deflate=∑(NumberPEWidth + PEDataRAMComressedSize) 
DWT=∑(NumberPEWidth + MaxNumberDirtyWordWidth +  
        (WordEncodingWidth × NumberDirtyWord)) 
DNT=∑(NumberPEWidth + MaxNumberDirtyNibbleWidth +  
        (NibbleEncodingWidth × NumberDirtyWord)) 
CACs=∑(NumberPEWidth + CACEncoding + 
   MaxNumberDirtyWordWidth+  
   (WordEncodingWidth × NumberDirtyWordInRAM)) 
GCAC=GCACEncoding + 
∑(NumberPEWidth + MaxNumberDirtyWordWidth +  
   (WordEncodingWidth × NumberDirtyWordInRAM)) 

A checkpoint includes not only the differenced data but also their 
index 



Bandwidth Consumption 

UART Time Resolution 

115k 1 s 

11.5k 100 ms 

1.15k 10 ms 

0.15k 1 ms 

USB (Full Speed) Time Resolution 

12000k 1 s 

1200k 100 ms 

120k 10 ms 

12k 1 ms 

we6_pe8 we8_pe16 we10_pe196 

CAC@1s 1.5k 2.6k 16k 

Deflate@1s 16.4k 5.3k 26k 

RAW@1s 18.4k 65k 400k 



Access Timing Diagram 

Primary Memory 

Secondary Memory 

Any write 

Re-synchronize 

Ready 

Access by the original design Access by the debug core 

Access by the Re-synchronization controller 

CACs and CAC Map 

Access by CAC Controller 

The primary memory is never accessed by a debug core and 
re-synchronization controller 

Start to read checkpoint 

Finish 

Sync again 

Start to read checkpoint 

Finish 

Sync again 



How do We Connect Column Accessible Caches? 
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