
Application Specific Compression Scheme for
Fast Checkpointing on FPGAs

Ting-Shuo Chou, Chen Huang, Bailey Miller,
Tony Givargis, and Frank Vahid

{tingshuc, givargis}@uci.edu
{chuang, bmillier, vahid}@cs.ucr.edu

ASP-DAC 2013

• Motivation

• Problem Statement

• Approaches

• Experimental Results

• Conclusions

Outline

1

Cyber-Physical Systems

Q:What is a cyber-physical system?

A: a system with integrations of computation and physical processes

2

Intelligent Transport System

Smart Car

Cyber-Physical Systems

Q:What is a cyber-physical system?

A: a system with integrations of computation and physical processes

Smart Bridge

Smart Grid

3

Cyber-Physical Systems

Q:What is a cyber-physical system?

A: a system with integrations of computation and physical processes

ASIMO, Service Robot

Paro, Therapeutic Robot

Roomba, Household

Robot

4

Cyber-Physical Systems

Q:What is a cyber-physical system?

A: a system with integrations of computation and physical processes

Pacemaker
Infusion Pump

Medical Ventilator

5

CPS Design and Validation in Medical Area

Cyber

Part

Physical

Part

Interface

Lung

Model

Controller

Model

Pressure Sensor

Ventilator

Model

Design & Implement

Stage

Stage

References:
• B. Miller, F. Vahid, T. Givargis, “Digital Mockups for the Testing of a Medical Ventilator,” ACM

SIGHIT Symposium on International Health Informatics (IHI), 2012
• Z. Jiang, M. Pajic, A. T. Connolly, S. Dixit, and R. Mangharam, “Real-time Heart Model for

Implantable Cardiac Device Validation and Verification,” IEEE Euromicro Conference on Real-
Time Systems (ECRTS), 2010 6

Early Prototype

Stage

Digital

Mockup of

Lung Model

D
ig

ita
l

B
y
p
a
s
s
 L

in
k

Prototype Stage

Medical

Ventilator

 Real time constraint

Digital Mockup of Human Lung

• We run lung model on a FPGA in real time

• Advantages:
– Configurability: adjust parameters of the lung (child and old man)

– Observability: watch pressure at any point in the lung

– Time-controllability: move time of the lung model back or forth

Digital
Connections

Digital Mockup

References:
• B. Miller, F. Vahid, T. Givargis, “MEDS: Mockup Electronic Data Sheets for Automated Testing of

Cyber-Physical Systems Using Digital Mockup,” Design Automation and Test in Europe, 2012

7

• Motivation

• Problem Statement

• Approaches

• Experimental Results

• Conclusions

Outline

8

Problem Statement

• Problem: Controllability of lung models and digital mockups in general

• Constraint: The lung model runs in real time => it can’t be suspended

• Goal: non-intrusive debugging and time-controllability

• Time-controllability: manipulate temporal state (i.e., time) of the lung model

• Non-intrusive debugging: not change timing behavior of a digital mockup

• How to do it:

• We use checkpoints:
• The FPGA’s internal state (contents in RAM or reg.) at a certain clock cycle

• We manipulate checkpoints through
1. Instrumenting Secondary Storage (Memory)

2. Developing Compression Scheme

9

Testing and Debugging Environment
Dual Processor System

The digital mockup continuously sends checkpoints to the
host machine

Microblaze

Lung IF Transmit IF Receive IF USB Checkpoint IF

Lung Model
Transmitter

Receiver

Digital Mockup

FPGA (Xilinx Virtex 5)

Digital Bypass Link

Checkpoint Checkpoint Checkpoint

Instrument secondary storage for non-intrusive debugging

Compress checkpoints for saving bandwidth

More checkpoints:
• Long monitor window
• Fine time resolution

10

• Motivation

• Problem Statement

• Approaches

• Weibel Lung Model

• Design Instrumentation

• Compression Scheme

• Experimental Results

• Conclusions

Outline

11

Weibel Lung Model: Equations

References:
• P. Barbini, et al., “A Dynamic Morphometric Model of the Normal Lung for Studying Expiratory

Flow Limitation in Mechanical Ventilation,” Annals of Biomedical Engineering, Vol. 33, No. 4, May 2005
• P. Barbini, et al., “A Simulation Study of Expiratory Flow Limitation in Obstructive Patients during

Mechanical Ventilation,” Annals of Biomedical Engineering, Vol. 34, No. 12, December 2006
• Electrical circuit for a bifurcating airway (http://www.physiome.org)

ODEs:

Pa1 = Va/Com_a

Pinlet = (Finlet * Ra1) + Pa1

d(Va)/dt = Finlet - Fa1

d(Fa1)/dt = (Pa1 - Pa2 -(Fa1 * Ra2))/La

Pb1 = Vb/Com_b

Pa2 = (Fbin * Rb1) + Pb1

Fa1 = Fcin + Fbin

d(Fb1)/dt = (Pb1 - Pb2 -(Fb1 * Rb2))/Lb

d(Vb)/dt = Fbin - Fb1

Pc1 = Vc/Com_c

Pa2 = (Fcin * Rc1) + Pc1

d(Fc1)/dt = (Pc1 - Pc2 -(Fc1 * Rc2))/Lc

d(Vc)/dt = Fcin - Fc1

2 levels Weibel Lung Model

• Weibel Lung Model is similar to RC circuit
– Pressure  Voltage

– Flow  Current

– Volume  Electronic Charges

12

Weibel Lung Model: Mapping

• Process Element: the processing unit that solves ODEs

• Thousands of ODEs are compiled into VHDL code by PE
compiler

Number of Generation

1 trachea

2 bronchi

3 bronchioles

4 bronchioles

PE

PE

PE

PE

PE
PE

Input (flow)

References:
• C. Huang, F. Vahid, and T. Givargis, “A custom FPGA processor for physical model differential

equation solving,” Embedded Systems Letters, 2011

PE compiler

Pa1 = Va/Com_a

Pinlet = (Finlet * Ra1) + Pa1

d(Va)/dt = Finlet - Fa1

d(Fa1)/dt = (Pa1 - Pa2 -(Fa1 * Ra2))/La

Pb1 = Vb/Com_b

Pa2 = (Fbin * Rb1) + Pb1

Fa1 = Fcin + Fbin

d(Fb1)/dt = (Pb1 - Pb2 -(Fb1 * Rb2))/Lb

d(Vb)/dt = Fbin - Fb1

Pc1 = Vc/Com_c

Pa2 = (Fcin * Rc1) + Pc1

d(Fc1)/dt = (Pc1 - Pc2 -(Fc1 * Rc2))/Lc

d(Vc)/dt = Fcin - Fc1

Pa1 = Va/Com_a

Pinlet = (Finlet * Ra1) + Pa1

d(Va)/dt = Finlet - Fa1

d(Fa1)/dt = (Pa1 - Pa2 -(Fa1 * Ra2))/La

Pb1 = Vb/Com_b

Pa2 = (Fbin * Rb1) + Pb1

Fa1 = Fcin + Fbin

d(Fb1)/dt = (Pb1 - Pb2 -(Fb1 * Rb2))/Lb

d(Vb)/dt = Fbin - Fb1

Pc1 = Vc/Com_c

Pa2 = (Fcin * Rc1) + Pc1

d(Fc1)/dt = (Pc1 - Pc2 -(Fc1 * Rc2))/Lc

d(Vc)/dt = Fcin - Fc1

13

4 levels Weibel Lung Model

Design Instrumentation at PE Level

Left
Data RAM

ALU

d1

dout

MUX

d2 d3

Instruction
RAM

l_input

l_addr

operation

d0

MUX

reg

l_data_sel

Right
Data RAM

d1

MUX

d2 d3

d0

MUX

Left
Data RAM

Right
Data RAM

reg

14

Design Instrumentation

1

Dout_B

Addr_B

Din_A

Dout_A

Addr_A

WE_A

Din_B
Dout_B

Addr_B

WE_B

Din_A

Dout_A

Addr_A

WE_A

Din_1 Addr_1 WE_1 Din_2

Dout_1

Addr_2 Freeze WB*

0

1

0

1

Mode*

0 1

0

1

Dout_2

Primary

Memory

Secondary

Memory Re-synchronize

Controller

Ready

D
irty

 In
d
ic

a
to

r

0

1
0

1

0 1

Freeze WB* Mode* Description

0 0 0 Normal use. Data at Din_1 are duplicated

1 0 0 Read data in secondary memory

1 1 0 Write back using data in secondary memory

1 1 1 Write back using data at Din_2

Note: no copy operation is required
15

read only

Access Timing Diagram

Primary Memory

Secondary Memory

Any write

Re-synchronize
Ready

Access by the original design Access by the debug core

Access by the Re-synchronization controller

The primary memory is never accessed by a debug core and
re-synchronization controller

Start to read checkpoint

Finish

Sync again

Start to read checkpoint

Finish

Sync again

16

Compression Scheme

• Our compression scheme is application-specific

• Our compression scheme uses data differencing approach
– use dirty flag to track dirty data

• Observations:
– the values generated by ODE solvers does not change too much over

time

– these values are restricted to be within a certain range in the case of lung
or heart mode

17

time

Lung
Pressure

Lung
Pressure

time

How to Encode the Differences

1
2

8
 w

o
rd

s

How about Dirty Word Tracking (DWT)?

How about Dirty Nibble Tracking (DNT)?

7 index bits + 7 unchanged nibble + 1 dirty nibble = Bad deal

7 index bits + 1 unchanged nibble + 7 dirty nibble = Good deal

10 index bits + 1 dirty nibble = Not so good, average

50 index bits + 5 dirty nibble = Not so good

70 index bits + 7 dirty nibble = Not so good

How about hybrid encoding method?

18

1
2

8
 w

o
rd

s

Hybrid Encoding Method

Access in the order of column for saving

index bit and removing unchanged nibbles

19

Idea: pack the words with three dirty nibbles at LSB and
access the data in the order of columns

How does Column Accessible Cache Works

CAC

MAP

0

0

1

1 1 1

1 1

1 0 1 1 0

Dirty Column Flags

Dirty Row Flags

1
2

8
 w

o
rd

s

Cache

Controller

In this case:

56(ln128 x 8) + 8(00000111) + 8(11111100) + 96(x 5 + x 19) = 168 bits

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0

20

CAC Map

Dirty Column Flags

Dirty Row Flags

Unchanged Nibbles

Dirty Nibbles

3 0

8 1

127 7

Where are Column Accessible Caches

Left
Data RAM

ALU

d1

dout

MUX

d2 d3

Instruction
RAM

l_input

l_addr

operation

d0

MUX

reg

l_data_sel

Right
Data RAM

d1

MUX

d2 d3

d0

MUX

Left
Data RAM

Right
Data RAM

reg

Column
Accessible

Cache

Column
Accessible

Cache

21

Distributed CACs and Global CAC

Global CAC Distributed CACs

22

D
e
b
u
g
 C

o
re

PE

PE

PE

PE

PE

PE

PE

PE

D
e
b
u
g
 C

o
re

Intuitively, we’ll have better compression rate when CAC is fully filled with entries

• Motivation

• Problem Statement

• Approaches

• Experimental Results

• Conclusions

Outline

23

Simulation Environment

Input parameter Possible value

lung model we4_pe4, we6_pe8

we8_pe16, we10_pe196

input pressure -500 ~ 500 mmHg

input oscillation rate 10 ~ 20 times / minute

input shape square and sine

interval between checkpoints 10 ~ 1000 ms

To explore the benefits of CACs, we build a customized simulator
that cycle-accurately simulates PEs and their network.

24

time

Lung
Pressure

Different Approaches for Comparison

Note: A checkpoint includes not only the differenced data but also
their index

Raw No compression

Deflate Compressed by Deflate

DWT Dirty Word Tracking

DNT Dirty Nibble Tracking

CACs Distributed Column Accessible Cache (CACs)

GCAC Global Column Accessible Cache (CAC)

25

Experimental Results I

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10ms 50ms 100ms 500ms 1000ms

A
ve

ra
ge

 s
iz

e
o

f
ch

ec
kp

o
in

ts
 (b

it
s)

CACs GCAC Raw Word Nibble Deflate

• we6_pe8 and 15 times/second are used

• We can see the data differencing approaches (i.e., CACs,
GCAC, DWT, and DNT) are much better than general
compression algorithm in our application

Average size of checkpoints

26

• The top of green bar shows the percentage that CACs or GCAC
create smaller checkpoint than DWT-approach

• Data differencing approaches are good (about 90% saving), yet
CACs and GCAC are event better (20% more saving)

Experimental Results II

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10ms CAC50ms CAC 100ms
CAC

500ms
CAC

1000ms
CAC

10ms
GCAC

50ms
GCAC

100ms
GCAC

500ms
GCAC

1000ms
GCAC

C
o

m
p

re
ss

io
n

 ra
te

 (
%

)

< 60% 60%~80% 80%~100% 100%~120% >120%

 Compression rate distribution against DWT

27

• Line fitting shows the trend

• Statistically, GCAC yields
better compression rate when
cache fill rate is higher

Experimental Results III

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

m
p

re
ss

io
n

 R
at

e

Cache Fill Rate

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

m
p

re
ss

io
n

 R
at

e

Cache Fill Rate

Compression rate of CACs against DWT

Compression rate of GCAC against DWT

0.76

0.64

28

FPGA Resource Overhead

 LUTs LUTs (modified) Slice Slices(modified)

BRAM36 0/1 200/2 0 72

RAM128X32S 100 434 (334%) 31 170

RAM64X32S 66 319 (383%) 21 112

RAM32X32S 16 177 (1006%) 4 57

RAM32X16S 8 119 (1387%) 2 54

CAC 320 - 87 -

CAC_32X1 457 - 138 -

CAC_64X1 476 - 147 -

CAC_128X1 484 - 144 -

 LUTs Slices BRAM

we4_pe4 7317 2832 52

we4_pe4_D 7779(6%) 3132 52 (0%)

we4_pe4_DC 8408(15%) 3363 52 (0%)

we6_pe8 8769 3720 56

we6_pe8_D 9875(13%) 3841 56 (0%)

we6_pe8_DC 11235(28%) 4505 56 (0%)

we8_pe16 12963 4747 64

we8_pe16_D 14431(11%) 5459 64 (0%)

we8_pe16_DC 17621(36%) 6656 64 (0%)

FPGA area of Weibel lung models

FPGA area overhead of checkpointing

 and compression engine

• The area overhead is introduced by non-intrusive monitoring
and creating checkpoint

• The overhead is acceptable

29

• Motivation

• Problem Statement

• Approaches

• Experimental Results

• Conclusions

Outline

30

Conclusions and Future Work

• Our design instrumentation provides non-intrusive debugging
– we trade FPGA resource (area) for it

• Our compression scheme saves 20% more than the basic data
differencing technique

• We will apply our technique to High-level CPS platform for
real-time debugging and monitoring

Xgrid

BRAM

PEs

31

Thank You!!
Q & A

Different Approaches for Comparison

Raw=∑(NumberPEWidth + PEDataRAMSize)
Deflate=∑(NumberPEWidth + PEDataRAMComressedSize)
DWT=∑(NumberPEWidth + MaxNumberDirtyWordWidth +
 (WordEncodingWidth × NumberDirtyWord))
DNT=∑(NumberPEWidth + MaxNumberDirtyNibbleWidth +
 (NibbleEncodingWidth × NumberDirtyWord))
CACs=∑(NumberPEWidth + CACEncoding +
 MaxNumberDirtyWordWidth+
 (WordEncodingWidth × NumberDirtyWordInRAM))
GCAC=GCACEncoding +
∑(NumberPEWidth + MaxNumberDirtyWordWidth +
 (WordEncodingWidth × NumberDirtyWordInRAM))

A checkpoint includes not only the differenced data but also their
index

Bandwidth Consumption

UART Time Resolution

115k 1 s

11.5k 100 ms

1.15k 10 ms

0.15k 1 ms

USB (Full Speed) Time Resolution

12000k 1 s

1200k 100 ms

120k 10 ms

12k 1 ms

we6_pe8 we8_pe16 we10_pe196

CAC@1s 1.5k 2.6k 16k

Deflate@1s 16.4k 5.3k 26k

RAW@1s 18.4k 65k 400k

Access Timing Diagram

Primary Memory

Secondary Memory

Any write

Re-synchronize

Ready

Access by the original design Access by the debug core

Access by the Re-synchronization controller

CACs and CAC Map

Access by CAC Controller

The primary memory is never accessed by a debug core and
re-synchronization controller

Start to read checkpoint

Finish

Sync again

Start to read checkpoint

Finish

Sync again

How do We Connect Column Accessible Caches?

Left
Data RAM

ALU

d1

MUX

d2 d3

Instruction
RAM

l_input

l_addr

operation

d0

MUX
l_data_sel

Right
Data RAM

d1

MUX

d2 d3

d0

MUX

Left
Data RAM

Right
Data RAM

Column
Accessible

Cache

Column
Accessible

Cache

PE PE PE

Debug Core

PE

Reference:

• T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, “Using Design-Level
Scan to Improve FPGA Design Observability and Controllability for
Functional Verification,” in FCCM, 2001

• C.L. Chuang and W.H. Cheng, "Hybrid approach to faster functional
verification with full visibility", IEEE Design & Test of Computers, pp.154-
162, April 2007

• M. A. Khan, R. N. Pittman, and A. Forin, “gNOSIS: A Board-level
Debugging and Verification Tool,” in ReConFig, 2010

• Xilinx ChipScope and Altera SiganlTap

Related Work

Generation 1

Generation 3

