Line Sharing Cache:
Exploring Cache Capacity with
Frequent Line Value Locality

Keitarou Oka, Hiroshi Sasaki and Koji Inoue
Kyushu University, Japan




Outline

» Background

» Motivation

» Line Sharing Cache
» Evaluation

» Conclusions




Problem

» Memory wall problem

® Off-chip memory bandwidth is limited by 1/0 pin
counts (no longer scale)

® Memory speed is much slower than processor speed

» Multicore processors aggregate the
memory wall problem

® Demands higher off-chip memory bandwidth
because of frequent memory accesses




Problem

» Memory wall problem

® Off-chip memory bandwidth is limited by 1/0 pin
counts (no longer scale)

® Memory speed is much slower than processor speed

» Multicore processors aggregate the
memory wall problem

e D Important to reduce
befLast Level Cache (LLC) misses




Goal of Our Research

» Today’s approach

® Integrating a large shared last-level cache (LLC)
- e.g., Intel Core i7 with 4MB to I15MB L3 cache

» Problem

® The large area requires high cost

Reducing LLC misses without increasing the size




Outline

» Background

¥ Motivation

® frequent Line Value Locality

» Line Sharing Cache (LSC)

» Evaluation

» Conclusions




Frequent Line Value Locality

» Frequent value locality [Yang and Gupta 2002}

® A small number of values occupy a large fraction of
memory access values

Our findings:

» Frequent line value locality (FLVL)

® In some applications, locality exists even when the
size of the value is expanded to a cache line




SN
B2
IS

Q
e,

C

)
i
.00
I

Analysis of FLVL

Data uniqueness ratio: proportion of
unique values written to the cache

100

M 1word M 2words M 4words ™ 8words

el

mcf twolf

00
()

(@)
o

I
o

N
o

Data uniqueness ratio

o

Even for 8 words some benchmarks
show high frequent line value locality




Outline

» Background

» Motivation

¥ Line Sharing Cache (LSC)

® Concept

® (Operation

® Structure

® Pros and cons

» Evaluation

» Conclusions




Concept

» Associate tag entries with a line value

Tag Array Data Array




Concept

» Associate tag entries with a line value

Tag Array Data Array

L~




Concept

» Associate tag entries with a line value

Tag Array Data Array
(. ) ( )




Concept

» Associate tag entries with a line value

» Remove multiple identical line values

Tag Array Data Array
(. ) ( )




Concept

» Associate tag entries with a line value

» Remove multiple identical line values

Tag Array Data Array
(. ) ( )




Concept

» Associate tag entries with a line value
» Remove multiple identical line values

» Increase tag entries by reducing data entries

Tag Array Data Array
(. ) ( )




Concept

» Associate tag entries with a line value
» Remove multiple identical line values

» Increase tag entries by reducing data entries

Tag Array Data Array
(. ) ( 2




Concept

» Associate tag entries with a line value
» Remove multiple identical line values

» Increase tag entries by reducing data entries

Tag Array Data Array

~N

“a f
bl




Concept

» Associate tag entries with a line value
» Remove multiple identical line values

» Increase tag entries by reducing data entries

Tag Array Data Array

~N

“a f
bl




Concept

» Associate tag entries with a line value
» Remove multiple identical line values

» Increase tag entries by reducing data entries

Tag Array Data Array

~

“a f
bl

LSC can increase the effective cache

size without increasing the physical size
—




Outline

» Background

» Motivation

¥ Line Sharing Cache (LSC)

® Concept

® (Operation

® Structure

® Pros and cons

» Evaluation

» Conclusions




Operation

» | Read hit operation
.
»| Write hit operation \LGXPla'“ed in this

presentation
J

» Read miss operation

» Write miss operation




Read Hit Operation

» Read data associated with the tag entry

Tag Arra Data Array
Address .-.-.-... ”n? )

tag

J

Cacﬁe hit




Write Hit Operation

Search the data array for the written value — value hit / miss

Value hit = the tag entry map onto the written value

Value miss — the tag entry map onto the written value after
update of LSC

Tag Array Data Array

- J

\ 4
Cache hit



Write Hit Operation

Search the data array for the written value — value hit / miss

Value hit = the tag entry map onto the written value

Value miss — the tag entry map onto the written value after
update of LSC

Tag Array Data Array

————\
-
Search for the
written value | Written value
\_

\ 4
Cache hit



Write Hit Operation

Search the data array for the written value — value hit / miss

Value hit = the tag entry map onto the written value

Value miss — the tag entry map onto the written value after
update of LSC

Tag Array Data Array
(—
== .

) Value hit )
Search for the A |
written value | Written value

\_

\ 4
Cache hit



Write Hit Operation

Search the data array for the written value — value hit / miss

Value hit = the tag entry map onto the written value

Value miss — the tag entry map onto the written value after
update of LSC

Tag Array Data Array

|

. 4\ Value hit )
Search for the A |
written value | Written value

\_

\ 4
Cache hit




Update of LSC (Value Miss)

> Select a victim entry from the data array

» Invalidate tag entries mapped to the victim entry

» Store the written value in the victim entry

Tag Array

\_

Search for
the written
— value miss

— ——

Written value

J

\ 4
Cache hit

Data Array

J




Update of LSC (Value Miss)

> Select a victim entry from the data array
» Invalidate tag entries mapped to the victim entry

» Store the written value in the victim entry

Tag Array Data Array

Select a
‘Lvictim entry

— ——

Search for Written value
the written

— value miss
\_ y,

\ 4
Cache hit




Update of LSC (Value Miss)

> Select a victim entry from the data array
» Invalidate tag entries mapped to the victim entry

» Store the written value in the victim entry

Tag Array Data Array

Ad ‘ Invalidate : : Select a J
4

indexT | : 1victim entr

— ——

Search for Written value
the written

— value miss
\_ y,

\ 4
Cache hit

Invalidate




Update of LSC (Value Miss)

> Select a victim entry from the data array

» Invalidate tag entries mapped to the victim entry

» Store the written value in the victim entry

Tag Array

(—)

Data Array

\_

Search for
the written
— value miss

— ——

Written value

J

\ 4
Cache hit




Update of LSC (Value Miss)

> Select a victim entry from the data array

» Invalidate tag entries mapped to the victim entry

» Store the written value in the victim entry

Tag Array Data Array
| ) -:DJ Store the J
(S

written valu

Search for Written value
the written

— value miss
\_ y,

\ 4
Cache hit




Update of LSC (Value Miss)

> Select a victim entry from the data array

» Invalidate tag entries mapped to the victim entry

» Store the written value in the victim entry

Tag Array Data Array
| ) -:DJ Store the J
(S

written valu

Search for Written value
the written

— value miss
\_ y,

\ 4
Cache hit




Outline

» Background

» Motivation

¥ Line Sharing Cache (LSC)

® Concept

® (Operation

® Structure

® Pros and cons

» Evaluation

» Conclusions




Structure (1/3)

» Tag Array

® Jag, Forward pointer (FPTR), Tag entry list (TLIST)

» Data Array

® line, Reverse pointer (RPTR)

Tag Array Data Array

Tag FPTR  TLIST Line RPTR
('t ) (= 7




Structure (2/3)

» How does each tag identify its associated line?

= FPTR stores the pointer to the associated line

Tag Array Data Array
Tag FPTR TLIST Line RPTR

T a N |

-




Structure (3/3)

» How does a line identify its associated tag!

m TLIST manages doubly linked list of the tag entries
associated with a line value

m» RPTR identifies the head and tail of a list

Tag Array Data Array
Tag FPTR TLIST Line RPTR

" a A Il




Structure (3/3)

» How does a line identify its associated tag!

m TLIST manages doubly linked list of the tag entries
associated with a line value

m» RPTR identifies the head and tail of a list

Tag Array Data Array
Tag FPTR TLIST Line RPTR

\
—""




Structure (3/3)

» How does a line identify its associated tag!

m TLIST manages doubly linked list of the tag entries
associated with a line value

m» RPTR identifies the head and tail of a list

Tag Array Data Array
Tag FPTR TLIST Line RPTR

\
—’—"




Outline

» Background

» Motivation

¥ Line Sharing Cache (LSC)

® Concept

® (Operation

® Structure

® Pros and cons

» Evaluation

» Conclusions




Pros and Cons

» Cache misses

® ) The effective size of the LLC increases

® :-( On a value miss, tag entries associated with a
victim data entry are invalidated

= But value misses decreases when FLVL is high

» Access Latency

® :-( Additional operations make write latency longer

= Search for the written value

= Update operation




Outline

» Background

» Motivation

» Line Sharing Cache (LSC)
» Evaluation

» Conclusions




Simulation Setup

» M5 processor simulator

® [SA:Alpha
» SPEC CPU 2000 benchmark suit

® Selected benchmarks

= SPEC INT: mcf, twolf, vpr, parser, vortex

= SPEC FP: ammp, apsi, art, applu, sixtrack, mgrid, swim

® [nput size:Train




System Configuration

Core
architecture

Single-core, one-IPC model

L1 | cache

32 KB, 2-way, 64B lines, | cycle latency

L1 D cache

32 KB, 2-way, 64B lines, 2 cycle latency

Main memory
latency

200 cycles

Conventional
LLC

256 KB, 16-way, 64 B lines, |12 cycles latency

23



Evaluated Cache Configuration

» Constraint: # of SRAM bits of LSC is
less than that of the conventional LLC

#oftag | #ofdata | 4 coRAM bits

entries entries

Conv. LLC
LSC-2
LSC-4

In LSC additional write latency is ignored




Performance

W|SC-2 W|SC-4

1

vpr

Speedup from the conv. LLC [%]

LSC-4 outperforms LSC-2

Some benchmarks show large performance improvement

25




MPKI (Misses Per Kilo Instructions)

74 6/ 48

i B Conv. LLC W [SC-2 E[SC-4

Ahawn

» The performance improvement of LSC comes
from MPKI reduction




Conclusions

» LLC managements which reduce the
number of misses are required

» Our proposal: LSC

® Allocates a single entry for lines which stores an
identical value

® Reduces the number of data entries and allows more
tag entries

» LSC outperforms the conventional LLC by
up to 35%

27



Back up Slides




Write Hit Operation on Value Hit (1/4)

» Tag comparison — Cache hit

» Searching written line value — Value hit

» Update of LSC

Tag Array Written value Data Array

€ )

=N

Tag FPTR  TLIST IT Line RPTR Line RPTR

Lower bits of
line value




Write Hit Operation on Value Hit (1/4)

» Tag comparison — Cache hit

» Searching written line value — Value hit

» Update of LSC

Tag Array Written value Data Array
Tag FPTR  TLIST Line RPTR Line RPIR

(T ) )

;

Value hit




Write Hit Operation on Value Hit (2/4)
Update of LSC

® Remove the accessed tag from the TLIST
® Associate the accessed tag with the written value

® Add the accessed tag to the TLIST of the written
value

Tag Array Data Array
Tag FPTR TLIST Line RPTR Line RPIR

€ 1\

=/

- N
Remove tag c from

the TLIST of A

J




Write Hit Operation on Value Hit (2/4)
Update of LSC

® Remove the accessed tag from the TLIST
® Associate the accessed tag with the written value

® Add the accessed tag to the TLIST of the written
value

Tag Array Data Array
Tag FPTR TLIST Line RPTR Line RPIR

(T ) )

=/

- N
Remove tag c from

the TLIST of A

J




Write Hit Operation on Value Hit (3/4)
Update of LSC

» Remove the accessed tag from the TLIST
» Associate the accessed tag with the written value

» Add the accessed tag to the TLIST of the written
value

Tag Array Data Array
Tag FPTR TLIST Line RPTR Line RPIR

€ 1\

~
Associate tag ¢ with
the written value: C y




Write Hit Operation on Value Hit (3/4)
Update of LSC

» Remove the accessed tag from the TLIST
» Associate the accessed tag with the written value

» Add the accessed tag to the TLIST of the written
value

Tag Array Data Array
Tag FPTR TLIST Line RPTR Line RPIR

€ 1\

~
Associate tag ¢ with
the written value: C y




Write Hit Operation on Value Hit (4/4)

» Remove the accessed tag from the TLIST
» Associate the accessed tag with the written value

» Add the accessed tag to the TLIST of the written
value

Tag Array Data Array
Tag FPTR TLIST Line RPTR Line RPIR

(T ) )

/\
4 )

TLIST of C is consist of tag b —

Add tag c the list of line value C
\_ J




Write Hit Operation on Value Hit (4/4)

» Remove the accessed tag from the TLIST
» Associate the accessed tag with the written value

» Add the accessed tag to the TLIST of the written
value

Tag Array Data Array
Tag FPTR TLIST Line RPTR Line RPIR

(T ) )

/\
4 )

TLIST of C is consist of tag b —

Add tag c the list of line value C
\_ J




Write Hit Operation on Value Miss (1/3)

» Tag comparison = Cache hit

» Search for written line value — Value miss

» LSC-Update:

Tag Array Written value Data Array

Tag FPTR  TLIST IT Line RPTR Line RPTR
('t ) = T\

A partof
line value




Write Hit Operation on Value Miss (1/3)

» Tag comparison = Cache hit

» Search for written line value — Value miss

» LSC-Update:

Tag Array Written value Data Array
Tag FPTR  TLIST B Line RPTR Line RPIR

(T ) )

Value miss




Write Hit Operation on Value Miss (2/3)
Update of LSC

Select a victim data entry

Invalidate tags associated with the victim data entry
Remove the accessed tag from the TLIST

Associate the accessed tag with the written value

Add the accessed tag to the TLIST of the written value

Tag Array Written value Data Array

Tag FPTR  TLIST B | Line RPTR Line RPTR
(t ) = N

=/

Victim data entry)




Write Hit Operation on Value Miss (3/3)
Update of LSC

Select a victim data entry

Invalidate tags associated with the victim data entry
Remove the accessed tag from the TLIST

Associate the accessed tag with the written value

Add the accessed tag to the TLIST of the written value

Tag Array Written value Data Array

Tag FPTR  TLIST B | Line RPTR Line RPTR
(t ) = N

Victim data entry)




Write Hit Operation on Value Miss (3/3)
Update of LSC

Select a victim data entry

Invalidate tags associated with the victim data entry
Remove the accessed tag from the TLIST

Associate the accessed tag with the written value

Add the accessed tag to the TLIST of the written value

Tag Array Written value Data Array

Tag FPTR  TLIST B | Line RPTR Line RPTR
(t ) = T\

Invalidate

Victim data entry)

Invalidate

Invalidate




Write Hit Operation on Value Miss (3/3)
Update of LSC

Select a victim data entry

Invalidate tags associated with the victim data entry
Remove the accessed tag from the TLIST

Associate the accessed tag with the written value

Add the accessed tag to the TLIST of the written value

Tag Array Written value Data Array

Tag FPTR  TLIST B | Line RPTR Line RPTR
(t ) = T\

Invalidate

=/

Victim data entry)

Invalidate

Invalidate




Write Hit Operation on Value Miss (3/3)
Update of LSC

Select a victim data entry

Invalidate tags associated with the victim data entry
Remove the accessed tag from the TLIST

Associate the accessed tag with the written value

Add the accessed tag to the TLIST of the written value

Tag Array Written value Data Array

Tag FPTR  TLIST B | Line RPTR Line RPTR
(t ) = T\

Invalidate

=/

Victim data entry)

Invalidate

Invalidate




Structure

» How does LSC efficiently search for a line value!?

= Horizontally split the data array
= |imit a placement of a line within a data set

Tag Array Data Array
Tag FPTR TLIST Line RPTR

N\
A




Structure

» How does LSC efficiently search for a line value!?

= Horizontally split the data array
= |imit a placement of a line within a data set

Tag Array Data Array

Tag FPTR TLIST Line RPTR Line RPTR
J

N\




Structure

» How does LSC efficiently search for a line value!

= Horizontally split the data array
= |imit a placement of a line within a data set

Tag Array Data Array
Tag FPTR TLIST Line RPTR Line RPIR

Data set

Search only within a data set




Read / Write Latency

» Read latency

® As long as that of the conventional cache

= FPTR access can overlap with a tag comparison

» Write latency

® [onger than that of the conventional cache

= Additional operation is required

m» Writeback buffer is useful

= Write operations can overlap with executing following
Instructions




