
Line Sharing Cache:
Exploring Cache Capacity with
Frequent Line Value Locality

Keitarou Oka, Hiroshi Sasaki and Koji Inoue
Kyushu University, Japan

Outline
‣ Background

‣ Motivation

‣ Line Sharing Cache

‣ Evaluation

‣ Conclusions

2

Problem
‣ Memory wall problem

• Off-chip memory bandwidth is limited by I/O pin
counts (no longer scale)

• Memory speed is much slower than processor speed

‣ Multicore processors aggregate the
memory wall problem

• Demands higher off-chip memory bandwidth
because of frequent memory accesses

3

Problem
‣ Memory wall problem

• Off-chip memory bandwidth is limited by I/O pin
counts (no longer scale)

• Memory speed is much slower than processor speed

‣ Multicore processors aggregate the
memory wall problem

• Demands higher off-chip memory bandwidth
because of frequent memory accesses

3

Important to reduce
Last Level Cache (LLC) misses

Goal of Our Research
‣ Today’s approach

• Integrating a large shared last-level cache (LLC)

- e.g., Intel Core i7 with 4MB to 15MB L3 cache

‣ Problem

• The large area requires high cost

4

Reducing LLC misses without increasing the size

Outline
‣ Background

Motivation

• Frequent Line Value Locality

‣ Line Sharing Cache (LSC)

‣ Evaluation

‣ Conclusions

5

Frequent Line Value Locality
‣ Frequent value locality [Yang and Gupta 2002]

• A small number of values occupy a large fraction of
memory access values

Our findings:

‣ Frequent line value locality (FLVL)

• In some applications, locality exists even when the
size of the value is expanded to a cache line

6

Analysis of FLVL

7

Data uniqueness ratio: proportion of
unique values written to the cache

H
ig

he
r

lo
ca

lit
y

0"

20"

40"

60"

80"

100"

mcf" twolf"

Da
ta
$u
ni
qu

en
es
s$r
a,

o$

1word" 2words" 4words" 8words"

Even for 8 words some benchmarks
show high frequent line value locality

Outline
‣ Background

‣ Motivation

Line Sharing Cache (LSC)

• Concept

• Operation

• Structure

• Pros and cons

‣ Evaluation

‣ Conclusions 8

Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

A

A

Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

A

A

Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

A

A

Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

A

A

‣ Remove multiple identical line values

Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

‣ Remove multiple identical line values

Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

‣ Remove multiple identical line values

‣ Increase tag entries by reducing data entries

Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

‣ Remove multiple identical line values

‣ Increase tag entries by reducing data entries

Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

‣ Remove multiple identical line values

‣ Increase tag entries by reducing data entries

Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

‣ Remove multiple identical line values

‣ Increase tag entries by reducing data entries

d

Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

‣ Remove multiple identical line values

‣ Increase tag entries by reducing data entries

dLSC can increase the effective cache
size without increasing the physical size

Outline
‣ Background

‣ Motivation

Line Sharing Cache (LSC)

• Concept

• Operation

• Structure

• Pros and cons

‣ Evaluation

‣ Conclusions 10

Operation
‣ Read hit operation

‣ Write hit operation

‣ Read miss operation

‣ Write miss operation

11

explained in this
presentation

Read Hit Operation
‣ Read data associated with the tag entry

12

Tag Array Data Array

a A

Data

Address

a =

Cache hit

tag index

Write Hit Operation
‣ Search the data array for the written value → value hit / miss

‣ Value hit → the tag entry map onto the written value

‣ Value miss → the tag entry map onto the written value after
update of LSC

13

Tag Array Data Array

b

AAddres

b

Cache hit

tag index B

=

a

Write Hit Operation
‣ Search the data array for the written value → value hit / miss

‣ Value hit → the tag entry map onto the written value

‣ Value miss → the tag entry map onto the written value after
update of LSC

13

Tag Array Data Array

b

AAddres

b

Cache hit

tag index B

=

a

Search for the
written value Written value

A

Write Hit Operation
‣ Search the data array for the written value → value hit / miss

‣ Value hit → the tag entry map onto the written value

‣ Value miss → the tag entry map onto the written value after
update of LSC

13

Tag Array Data Array

b

AAddres

b

Cache hit

tag index B

=

a

Value hit
Search for the
written value Written value

A

Write Hit Operation
‣ Search the data array for the written value → value hit / miss

‣ Value hit → the tag entry map onto the written value

‣ Value miss → the tag entry map onto the written value after
update of LSC

13

Tag Array Data Array

b

AAddres

b

Cache hit

tag index B

=

a

Value hit
Search for the
written value Written value

A

Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array

b

AAddres

c

Cache hit

tag index B

=

a

Search for
the written
→ value miss

Written value
C

c

Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array

b

AAddres

c

Cache hit

tag index B

=

a

Search for
the written
→ value miss

Written value
C

Select a
victim entry

c

Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array

b

AAddres

c

Cache hit

tag index B

=

a

Search for
the written
→ value miss

Written value
C

Select a
victim entry

Invalidate

Invalidate
c

Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array
Addres

c

Cache hit

tag index B

=

Search for
the written
→ value miss

Written value
C

c

Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array
Addres

c

Cache hit

tag index B

=

Search for
the written
→ value miss

Written value
C

C Store the
written value

c

Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array
Addres

c

Cache hit

tag index B

=

Search for
the written
→ value miss

Written value
C

C Store the
written value

c

Outline
‣ Background

‣ Motivation

Line Sharing Cache (LSC)

• Concept

• Operation

• Structure

• Pros and cons

‣ Evaluation

‣ Conclusions 15

Structure (1/3)
‣ Tag Array

• Tag, Forward pointer (FPTR), Tag entry list (TLIST)

‣ Data Array

• Line, Reverse pointer (RPTR)

16

Data ArrayTag Array
FPTR LineTag TLIST RPTR

Structure (2/3)
‣ How does each tag identify its associated line?

➡ FPTR stores the pointer to the associated line

17

Data ArrayTag Array
FPTR LineTag TLIST RPTR

a

b

c

A

Structure (3/3)

18

Data ArrayTag Array
FPTR

a

b

c

A

LineTag TLIST RPTR

‣ How does a line identify its associated tag?

➡ TLIST manages doubly linked list of the tag entries
associated with a line value

➡ RPTR identifies the head and tail of a list

Structure (3/3)

18

Data ArrayTag Array
FPTR

a

b

c

A

LineTag TLIST RPTR

‣ How does a line identify its associated tag?

➡ TLIST manages doubly linked list of the tag entries
associated with a line value

➡ RPTR identifies the head and tail of a list

Structure (3/3)

18

Data ArrayTag Array
FPTR

a

b

c

A

LineTag TLIST RPTR

‣ How does a line identify its associated tag?

➡ TLIST manages doubly linked list of the tag entries
associated with a line value

➡ RPTR identifies the head and tail of a list

Outline
‣ Background

‣ Motivation

Line Sharing Cache (LSC)

• Concept

• Operation

• Structure

• Pros and cons

‣ Evaluation

‣ Conclusions 19

Pros and Cons
‣ Cache misses

• :-) The effective size of the LLC increases

• :-(On a value miss, tag entries associated with a
victim data entry are invalidated

- But value misses decreases when FLVL is high

‣ Access Latency

• :-(Additional operations make write latency longer

- Search for the written value

- Update operation
20

Outline
‣ Background

‣ Motivation

‣ Line Sharing Cache (LSC)

‣ Evaluation

‣ Conclusions

21

Simulation Setup
‣ M5 processor simulator

• ISA: Alpha

‣ SPEC CPU 2000 benchmark suit

• Selected benchmarks

- SPEC INT: mcf, twolf, vpr, parser, vortex

- SPEC FP: ammp, apsi, art, applu, sixtrack, mgrid, swim

• Input size: Train

22

System Configuration

Core
architecture

Single-core, one-IPC model

L1 I cache 32 KB, 2-way, 64B lines, 1 cycle latency

L1 D cache 32 KB, 2-way, 64B lines, 2 cycle latency

Main memory
latency

200 cycles

Conventional
LLC

256 KB, 16-way, 64 B lines, 12 cycles latency

23

Evaluated Cache Configuration
‣ Constraint: # of SRAM bits of LSC is

less than that of the conventional LLC

of tag
entries

of data
entries

of SRAM bits

Conv. LLC 4 K 4 K 288 KB
LSC-2 8 K 2 K 221 KB
LSC-4 16 K 1 K 240 KB

24

In LSC additional write latency is ignored

Performance

‣ LSC-4 outperforms LSC-2

‣ Some benchmarks show large performance improvement
25

!5#
0#
5#
10#
15#
20#
25#
30#
35#

mcf# twolf# vpr# ammp# apsi#

CINT# CFP#

Sp
ee
du

p&
fr
om

&th
e&
co
nv
.&L
LC
&[%

]&

LSC!2# LSC!4#

0"

5"

10"

15"

20"

mcf" twolf" vpr" ammp" apsi"

CINT" CFP"

M
PK

I%

Conv."LLC" LSC=2" LSC=4"

MPKI (Misses Per Kilo Instructions)

‣ The performance improvement of LSC comes
from MPKI reduction

26

74 67 48

Conclusions
‣ LLC managements which reduce the

number of misses are required

‣ Our proposal: LSC

• Allocates a single entry for lines which stores an
identical value

• Reduces the number of data entries and allows more
tag entries

‣ LSC outperforms the conventional LLC by
up to 35%

27

Back up Slides

28

Write Hit Operation on Value Hit (1/4)

Data ArrayTag Array
FPTR TLIST

a A

Line Line RPTRRPTR

a

Tag

c

d

C D

C
Written value

Lower bits of
line value

‣ Tag comparison → Cache hit

‣ Searching written line value → Value hit

‣ Update of LSC

c

=

Hit

b

e
f 29

Write Hit Operation on Value Hit (1/4)

Data ArrayTag Array
FPTR TLIST

a A

Line Line RPTRRPTR

a

Tag

c

d

C D

C
Written value

= =

Value hit

‣ Tag comparison → Cache hit

‣ Searching written line value → Value hit

‣ Update of LSC

c

=

Hit

b

e
f 29

Write Hit Operation on Value Hit (2/4)
Update of LSC

• Remove the accessed tag from the TLIST

• Associate the accessed tag with the written value

• Add the accessed tag to the TLIST of the written
value

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

c

=

hit

a

c

d
e
f

b

30

Remove tag c from
the TLIST of A

Write Hit Operation on Value Hit (2/4)
Update of LSC

• Remove the accessed tag from the TLIST

• Associate the accessed tag with the written value

• Add the accessed tag to the TLIST of the written
value

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

c

=

hit

a

c

d
e
f

b

30

Remove tag c from
the TLIST of A

Write Hit Operation on Value Hit (3/4)
Update of LSC

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

c

=

hit

a

c

d

b

e
f

‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written
value

31

Associate tag c with
the written value: C

Write Hit Operation on Value Hit (3/4)
Update of LSC

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

c

=

hit

a

c

d

b

e
f

‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written
value

31

Associate tag c with
the written value: C

Write Hit Operation on Value Hit (4/4)

Data ArrayTag Array
FPTR TLIST

a A

Line Line RPTRRPTRTag

C D

c

=

hit

a

c

d

b

e
f 32

‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written
value

TLIST of C is consist of tag b →
Add tag c the list of line value C

Write Hit Operation on Value Hit (4/4)

Data ArrayTag Array
FPTR TLIST

a A

Line Line RPTRRPTRTag

C D

c

=

hit

a

c

d

b

e
f 32

‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written
value

TLIST of C is consist of tag b →
Add tag c the list of line value C

Write Hit Operation on Value Miss (1/3)

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

B
Written value

A part of
line value

‣ Tag comparison → Cache hit

‣ Search for written line value → Value miss

‣ LSC-Update:

c

=

hit

a

c

d

b

e
f 33

Write Hit Operation on Value Miss (1/3)

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

B
Written value

= =

Value miss

‣ Tag comparison → Cache hit

‣ Search for written line value → Value miss

‣ LSC-Update:

c

=

hit

a

c

d

b

e
f 33

Write Hit Operation on Value Miss (2/3)
Update of LSC

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

B
Written value

B

a

c

d

b

e
f

‣ Select a victim data entry

‣ Invalidate tags associated with the victim data entry

‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written value

c

=

hit
34

Victim data entry

Write Hit Operation on Value Miss (3/3)
Update of LSC

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

B
Written value

B

a

c

d

b

e
f

c

=

hit
35

Victim data entry

‣ Select a victim data entry

‣ Invalidate tags associated with the victim data entry

‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written value

Write Hit Operation on Value Miss (3/3)
Update of LSC

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

B
Written value

B

a

c

d

b

e
f

c

=

Invalidate

Invalidate

Invalidate
hit

35

Victim data entry

‣ Select a victim data entry

‣ Invalidate tags associated with the victim data entry

‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written value

Write Hit Operation on Value Miss (3/3)
Update of LSC

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

B
Written value

B

a

c

d

b

e
f

c

=

Invalidate

Invalidate

Invalidate
hit

35

Victim data entry

‣ Select a victim data entry

‣ Invalidate tags associated with the victim data entry

‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written value

Write Hit Operation on Value Miss (3/3)
Update of LSC

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

D

B
Written value

B

a

c

d

b

e
f

c

=

Invalidate

Invalidate

Invalidate
hit

35

Victim data entry

‣ Select a victim data entry

‣ Invalidate tags associated with the victim data entry

‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written value

Structure

Data ArrayTag Array
Tag FPTR TLIST

a

b
c

A

Line RPTR

‣ How does LSC efficiently search for a line value?

➡ Horizontally split the data array
➡ Limit a placement of a line within a data set

36

Structure

Data ArrayTag Array
Tag FPTR TLIST

a

b
c

A

Line Line RPTRRPTR

‣ How does LSC efficiently search for a line value?

➡ Horizontally split the data array
➡ Limit a placement of a line within a data set

36

Structure

Data ArrayTag Array
Tag FPTR TLIST

a

b
c

A

Line Line RPTRRPTR

Data set

‣ How does LSC efficiently search for a line value?

➡ Horizontally split the data array
➡ Limit a placement of a line within a data set

Search only within a data set

36

Read / Write Latency
‣ Read latency

• As long as that of the conventional cache

- FPTR access can overlap with a tag comparison

‣ Write latency

• Longer than that of the conventional cache

- Additional operation is required

➡ Writeback buffer is useful

- Write operations can overlap with executing following
instructions

37

