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Problem
‣ Memory wall problem

• Off-chip memory bandwidth is limited by I/O pin 
counts (no longer scale)

• Memory speed is much slower than processor speed

‣ Multicore processors aggregate the 
memory wall problem

• Demands higher off-chip memory bandwidth 
because of frequent memory accesses
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Important to reduce 
Last Level Cache (LLC) misses



Goal of Our Research
‣ Today’s approach

• Integrating a large shared last-level cache (LLC)

- e.g., Intel Core i7 with 4MB to 15MB L3 cache

‣ Problem

• The large area requires high cost
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Reducing LLC misses without increasing the size
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Frequent Line Value Locality
‣ Frequent value locality [Yang and Gupta 2002]

• A small number of values occupy a large fraction of 
memory access values

Our findings:

‣ Frequent line value locality (FLVL)

• In some applications, locality exists even when the 
size of the value is expanded to a cache line
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Analysis of FLVL
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Data uniqueness ratio: proportion of 
unique values written to the cache
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Concept

9

‣ Associate tag entries with a line value

Tag Array Data Array
a

b
c

A

‣ Remove multiple identical line values

‣ Increase tag entries by reducing data entries

dLSC can increase the effective cache 
size without increasing the physical size
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Operation
‣ Read hit operation

‣ Write hit operation

‣ Read miss operation

‣ Write miss operation

11

explained in this 
presentation



Read Hit Operation 
‣ Read data associated with the tag entry
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Tag Array Data Array

a A

Data

Address

a =

Cache hit

tag index



Write Hit Operation
‣ Search the data array for the written value → value hit / miss

‣ Value hit → the tag entry map onto the written value

‣ Value miss → the tag entry map onto the written value after 
update of LSC 
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Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array

b

AAddres

c

Cache hit

tag index B

=

a

Search for 
the written
→ value miss

Written value
C

c



Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array

b

AAddres

c

Cache hit

tag index B

=

a

Search for 
the written
→ value miss

Written value
C

Select a 
victim entry

c



Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array

b

AAddres

c

Cache hit

tag index B

=

a

Search for 
the written
→ value miss

Written value
C

Select a 
victim entry

Invalidate

Invalidate
c



Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array
Addres

c

Cache hit

tag index B

=

Search for 
the written
→ value miss

Written value
C

c



Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array
Addres

c

Cache hit

tag index B

=

Search for 
the written
→ value miss

Written value
C

C Store the 
written value

c



Update of LSC (Value Miss)
‣ Select a victim entry from the data array

‣ Invalidate tag entries mapped to the victim entry

‣ Store the written value in the victim entry

14

Tag Array Data Array
Addres

c

Cache hit

tag index B

=

Search for 
the written
→ value miss

Written value
C

C Store the 
written value

c



Outline
‣ Background

‣ Motivation

Line Sharing Cache (LSC)

• Concept

• Operation

• Structure

• Pros and cons

‣ Evaluation

‣ Conclusions 15



Structure (1/3)
‣ Tag Array

• Tag, Forward pointer (FPTR), Tag entry list (TLIST)

‣ Data Array

• Line, Reverse pointer (RPTR) 
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Data ArrayTag Array
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Structure (2/3)
‣ How does each tag identify its associated line?

➡ FPTR stores the pointer to the associated line

17

Data ArrayTag Array
FPTR LineTag TLIST RPTR

a

b

c

A



Structure (3/3)
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Pros and Cons
‣ Cache misses

• :-) The effective size of the LLC increases

• :-( On a value miss, tag entries associated with a 
victim data entry are invalidated

- But value misses decreases when FLVL is high

‣ Access Latency

• :-( Additional operations make write latency longer

- Search for the written value

- Update operation
20
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Simulation Setup
‣ M5 processor simulator

• ISA: Alpha

‣ SPEC CPU 2000 benchmark suit

• Selected benchmarks

- SPEC INT: mcf, twolf, vpr, parser, vortex

- SPEC FP: ammp, apsi, art, applu, sixtrack, mgrid, swim

• Input size: Train
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System Configuration

Core 
architecture

Single-core, one-IPC model

L1 I cache 32 KB, 2-way, 64B lines, 1 cycle latency

L1 D cache 32 KB, 2-way, 64B lines, 2 cycle latency

Main memory 
latency

200 cycles

Conventional 
LLC

256 KB, 16-way, 64 B lines, 12 cycles latency
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Evaluated Cache Configuration
‣ Constraint: # of SRAM bits of LSC is 

less than that of the conventional LLC

# of tag 
entries

# of data 
entries

# of SRAM bits

Conv. LLC 4 K 4 K 288 KB
LSC-2 8 K 2 K 221 KB
LSC-4 16 K 1 K 240 KB

24

In LSC additional write latency is ignored



Performance

‣ LSC-4 outperforms LSC-2

‣ Some benchmarks show large performance improvement
25
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Conclusions
‣ LLC managements which reduce the 

number of misses are required

‣ Our proposal: LSC

• Allocates a single entry for lines which stores an 
identical value

• Reduces the number of data entries and allows more 
tag entries

‣ LSC outperforms the conventional LLC by 
up to 35%
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Write Hit Operation on Value Hit (2/4)
Update of LSC

• Remove the accessed tag from the TLIST

• Associate the accessed tag with the written value

• Add the accessed tag to the TLIST of the written 
value

Data ArrayTag Array
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Remove tag c from 
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Write Hit Operation on Value Hit (3/4)
Update of LSC
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‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written 
value
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Write Hit Operation on Value Hit (3/4)
Update of LSC

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

C D

c

=

hit

a

c

d

b

e
f

‣ Remove the accessed tag from the TLIST

‣ Associate the accessed tag with the written value

‣ Add the accessed tag to the TLIST of the written 
value

31

Associate tag c with 
the written value: C



Write Hit Operation on Value Hit (4/4)
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‣ Associate the accessed tag with the written value
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value

TLIST of C is consist of tag b →
Add tag c the list of line value C
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Write Hit Operation on Value Miss (1/3)
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Write Hit Operation on Value Miss (1/3)
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Write Hit Operation on Value Miss (2/3)
Update of LSC
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Write Hit Operation on Value Miss (3/3)
Update of LSC
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Write Hit Operation on Value Miss (3/3)
Update of LSC

Data ArrayTag Array
FPTR TLIST

A

Line Line RPTRRPTRTag

D

B
Written value

B

a

c

d

b

e
f

c

=

Invalidate

Invalidate

Invalidate
hit

35

Victim data entry
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Structure
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‣ How does LSC efficiently search for a line value?

➡ Horizontally split the data array
➡ Limit a placement of a line within a data set
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Structure

Data ArrayTag Array
Tag FPTR TLIST

a

b
c

A

Line Line RPTRRPTR

Data set

‣ How does LSC efficiently search for a line value?

➡ Horizontally split the data array
➡ Limit a placement of a line within a data set

Search only within a data set
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Read / Write Latency 
‣ Read latency

• As long as that of  the conventional cache

- FPTR access can overlap with a tag comparison

‣ Write latency 

• Longer than that of the conventional cache

- Additional operation is required

➡ Writeback buffer is useful

- Write operations can overlap with executing following 
instructions
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