

Block-level Designs of Die-to-Wafer Bonded 3D ICs and Their Design Quality Tradeoffs

Krit Athikulwongse, Dae Hyun Kim, Moongon Jung, and Sung Kyu Lim Speaker: Shreepad Panth School of ECE, Georgia Institute of Technology, Atlanta, GA

ASPDAC 2013 (Jan 25, 2013)

Near Future 3D ICs

- Wafer-to-wafer bonding is a low cost process, but it requires that • all dies have the same size
- In several cases, die-to-wafer bonding is more practical than waferulletto-wafer bonding and still low-cost
 - Memory + logic stacking
 - Logic-to-logic stacking when re from different companies
 - Designs with IP blocks t

- ce different size of dies in the stack
- In near future, block-level designs are likely to be early 3D ICs on ۲ the market because the methodology allows the reuse of optimized **IP** blocks

Related Work

- TSV position is an important design factor that limits the quality of 3D ICs in terms of:
 - Performance: area, wirelength, delay, and power
 - Reliability: temperature and mechanical stress
- No previous work has studied the quality trade-offs between different styles of block-level layout of die-to-wafer bonded 3D ICs in a holistic manner

Problem Statement (I)

- A 2-tier 3D IC is focused in this work
- Both dies are facing down
 - Compatibility with popular flip-chip packaging
 - Heat sink attached on back side of the top die for good cooling
- Bottom die has larger footprint than top die
 - Large area available for C4 bumps for good power delivery

Problem Statement (II)

- Redistribution layer (RDL)
 - Necessary if some TSVs in bottom die are outside the footprint of top die
 - Not needed if all TSVs in bottom die are inside the footprint of the top die

Problem Statement (III)

- Layout of the top die is fixed
- Study three different design styles of the bottom die
 - TSV-farm: dense array of TSVs in the middle of bottom die (no need for RDL)
 - TSV-distributed: arrays of TSVs distributed across bottom die
 - TSV-whitespace: TSVs inserted in whitespace nearby connecting pins

Design Flow

- Partitioning:
 - Use same partition in all design styles for fair comparison
- Floorplanning:
 - Preplace TSVs (TSV-farm and TSV-distributed)
 - Postplace TSVs (TSV-whitespace)
- Timing optimization:
 - Set timing constraints of each die according to [Y.-J. Lee, 3DIC 2010]
 - Insert buffers to meet the constraints of each die separately
- Routing
 - Routing on each die
 - RDL routing (TSV-distributed and TSV-whitespace)

Evaluation – Traditional Metrics

- Area and wirelength are directly obtained from the layout of both bottom and top dies
- Delay and power are analyzed using the following flow:

Evaluation – Reliability Metrics Temperature (I)

• Temperature is analyzed using the following flow:

Evaluation – Reliability Metrics Temperature (II)

Evaluation – Reliability Metrics Mechanical Stress [M. Jung, DAC 2011] (I)

- Baseline TSV stress model from FEA simulation
 - Model realistic TSV structures: TSV, liner, landing pad
 - Obtain stress tensor from simulation result
 - Convert to Cartesian coordinate

$$S_{xyz} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_{rr} & \sigma_{r\theta} & \sigma_{rz}\\ \sigma_{\theta r} & \sigma_{\theta \theta} & \sigma_{\theta z}\\ \sigma_{zr} & \sigma_{z\theta} & \sigma_{zz} \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Stress tensor from
FEA simulation

Evaluation – Reliability Metrics Mechanical Stress [M. Jung, DAC 2011] (II)

- stress influence zone (25um) TSV1 TSV2 P: point under consideration TSV3 TSV4 TSV4 doesn't affect P TSV1, TSV2, and TSV3 affect P
- Full-chip stress and reliability analysis using linear superposition ٠

12/29

The Test Circuit

• A reconfigurable computing array obtained from OpenCores

Total #gates	1,363,536
#Interblock nets	1,853
#TSVs	312
Total #blocks	95
#Blocks on top die	26
#Blocks on bottom die	69

Experiments

- Baseline designs
 - TSV size: 10 μm
 - TSV pitch: 30 μm
- Small TSV (Small TSV size)
 - TSV size: 5 μm
 - TSV pitch: 30 μm
- Dense TSV (Small TSV size + narrow TSV pitch)
 - TSV size: 5 μm
 - TSV pitch: 15 μm

Baseline – Layout in TSV-farm Style

Bottom Die

TSV Farm

Top Die

Bonding Pads (Top Metal)

Baseline – Layout in TSV-distributed Style

Bottom Die

RDL

A TSV Array

Bonding Pads (to top die) (to bottom die)

Baseline – Layout in TSV-whitespace Style

Bottom Die

RDL

Most TSVs are in whitespace

Baseline – Wirelength, Delay, and Buffers

Baseline – Power, Temperature, and Stress

Baseline – Temperature Map of Bottom Die

TSV-farm

TSV-distributed

TSV-whitespace

Hot spot far from TSV farm Only few TSVs nearby hot spot 20/29

Baseline – Stress Map of Bottom Die

TSV stress impacts area nearby the TSV

Baseline – Stress Map of Bottom Die (Zoom-up)

Stress from nearby TSVs adds up Areas impacted by TSV stress do not overlap much

Small TSV – Power, Temperature, and Stress

25/29

Dense TSV – Power and Temperature

Dense TSV – Stress

Conclusions

 A circuit is manually designed in three different styles to study trade-offs of the quality of the layouts

TSV-farm style

- Shortest wirelength and best timing
- Highest average stress, but smallest impacted area
- TSV-distributed style
 - Longest wirelength (TSVs interfere placement)
 - Lowest temperature (TSVs help reduce temperature)

29/29

Thank you

Questions?