Thermal-reliable 3D Clock-tree Synthesis Considering Nonlinear Electrical-thermal-coupled TSV Model

Yang Shang¹, Chun Zhang¹, Hao Yu¹, Chuan Seng Tan¹, Xin Zhao², Sung Kyu Lim²

¹School of Electrical and Electronic Engineering Nanyang Technological University, Singapore ²GTCAD Laboratory, Georgia Institute of Technology, Atlanta. USA

http://www.ntucmosetgp.net

Outline

- Background and Motivation
- Electrical-thermal-coupled TSV Model
- Nonlinear Optimization of Skew Reduction
- Experimental Results
- Conclusion and Future Work

3D Server for Big-data Cloud Server

3D Processor

Supercomputer

http://www.techradar.com/news/computing-components/3d-processors-memory-and-storage-explained-987509

http://javier.esilicon.com/2011/01/30/thru-silicon-viascurrent-state-of-the-technology/

Thermal Challenges in 3D Integration

- Thermal reliability is concerned: large non-uniform thermal gradient as limited heat dissipation paths in 3D IC
- 3D clock-tree synthesis to balance electrical-thermal coupling induced skew

Temperature adds up from longer heat dissipation path

♦ 80°C ♦ Skew: 100ps
 ♦
$$60^{\circ}$$
C ♦ Skew: 10ps
 ♦ 40° C ♦ 5 ♦ 5
 ♦ Skew: 1ps

3D CLK network with skew under temperature profile

Temperature Aware Clock-tree Synthesis

- Clock-skew reduction methods considering temperature
 - Buffer Insertion [1]
 - Merging point adjustment [2]
 - Wire length balancing[3]
- 3D clock-skew reduction by thermal TSV insertion, which requires
 - Accurate electrical-thermal TSV model
 - Skew balance method

[1] J. Minz, X. Zhao, and S. K. Lim, "Buffered clock tree synthesis for 3d ics under thermal variations," in IEEE/ACM ASP-DAC, 2008.

[2]M. Cho, S. Ahmed, and D. Pan, "TACO: Temperature aware clock-tree optimization," in IEEE/ACM ICCAD, 2005.

[3]J. Cong, A. Kahng, C. Koh, and C. A. Tsao, "Bounded-skew clock and steiner routing," ACM Trans. on Design Automation of Electronic Systems, vol. 3, no. 3, pp. 341–388, 1998.

TSV Fabrication Technology

- TSV material: Al/Cu, under-bump-metal
- TSV diameter: 1~20um
- TSV height: 20~50um
- Liner material: SiO₂ or Si₃N₄
- Liner thickness: 0.2~0.5um

http://www.imec.be/ScientificReport/SR2009/HTML/1213308.html

Signal TSVs

- Signal TSVs provide electrical connection between adjacent tiers
- Non-linear MOS-capacitance (MOSCAP) is formed between signal TSV and substrate due to the existence of liner
 - Low-k liner is preferred (SiO₂)
 - Depletion region exists because of the work function difference between TSV metal and silicon substrate
 - The radius of depletion region is temperature and voltage dependent

C-V curve of MOSCAP

Signal TSV Modeling

RC equivalent circuit of signal TSVs

 r_{ox} is the outer radius of liner,

 $\ensuremath{\mathsf{r}_{\mathsf{metal}}}$ is the radius of TSV,

 r_{dep} is the outer radius of depletion region

TSV model considering non-linear temperature effect

$$\begin{bmatrix}
 R_T = R_0 (1 + \alpha (T - T_0)) \\
 C_T = C_0 + \beta_1 T + \beta_2 T^2
 \end{bmatrix}$$

 α and $\beta_1,\,\beta_2$ are the temperature coefficients

Signal TSV Delay Modeling

Signal TSVs introduce noticed delay

Process and capacitance dependent

Non-linear function with temperature

Nonlinear Electrical-thermal-coupled Signal TSV Delay Model

Scalable signal TSV delay model

$$\tau = R_{in}\alpha\beta_2 T^3 + R_{in}[(1 - \alpha T_0)\beta_2 + \alpha\beta_1]T^2 + [\alpha(\tau_0 + R_{in}C_0) + (1 - \alpha T_0)R_{in}\beta_1]T + (1 - \alpha T_0)(R_{in}C_0 + \tau_0)$$

where R_{in} is the total resistance looking from C_T to the input and τ_0 is the delay of circuit without C_T

Non-linear function of in delay model with temperature

$$D_{TSV} = k_0 + k_1 T + k_2 T^2 + k_3 T^3$$

where k0, k1, k2, k3 are the temperature coefficient in different order

Dummy TSVs

- Dummy TSVs provide additional heat dissipation paths to heat-sink as TSV metal (Cu, 400W/m · K) has much larger thermal conductivity than liner (SiO₂, 1.2W/m · K)
 - Chip temperature can be reduced by adding thermal TSVs
 - High thermal conductivity liner material is preferred (Si₃N₄, 30W/m · K)

Dummy TSV Model

- Dummy TSV density (η) is the ratio equivalent area of thermal TSV over total chip area(A)
- Total thermal conductivity between chip and heat sink $\sigma_{Total} = \eta \cdot \sigma_{TSV} + (1 \eta)\sigma_0$

 σ_{TSV} and σ_0 are the chip thermal conductivity with and without TSV, respectively

Thermal Gradient Reduction by Dummy TSV Insertion

Temperature reduction saturation effect due to dummy TSV insertion

$$\Delta T = T_0 - T_{TSV} = \frac{P \cdot l}{A\sigma_0} \cdot \frac{\eta}{\frac{\sigma_0}{\sigma_{TSV} - \sigma_0} + \eta}$$

- P/A is the power density,
- I is the equivalent length of thermal dissipation
- ΔT increases linearly with η as η is smaller than $\sigma_0 / (\sigma_{TSV} \sigma_0)$,
- ΔT is less sensitive to η when η is approaching or larger than $\sigma_0 / (\sigma_{TSV} \sigma_0)$,
- η is limited by the chip area overhead and saturation of temperature reduction effect
- Balanced thermal gradient will balance clock skew

n

Nonlinear OPT of 3D CLK Skew by Dummy TSV Insertion: Problem Formulation I

Objective function: minimize the variance of skew in all clock branches

$$min: f(\mathbf{D}) = \frac{1}{C-1} \sum_{k=1}^{C} (D_k - \overline{D})^2$$

Parameters: dummy TSV insertion density

$$min: f(\mathbf{x}) = \frac{1}{C-1} \sum_{k=1}^{C} (\hat{c}_k^2 + 2\hat{c}_k \hat{\mathbf{f}}_k^T \mathbf{x} + \mathbf{x}^T (\hat{\mathbf{f}}_k \hat{\mathbf{f}}_k^T + \hat{c}_k \hat{H}_k) \mathbf{x} + \hat{\mathbf{f}}_k^T \mathbf{x}^T \mathbf{x} \hat{H}_k \mathbf{x} + \frac{1}{A} \mathbf{x}^T \hat{H}_k \mathbf{x} \mathbf{x}^T \hat{H}_k \mathbf{x})$$

$$+ \hat{\mathbf{f}}_k^T \mathbf{x}^T \mathbf{x} \hat{H}_k \mathbf{x} + \frac{1}{A} \mathbf{x}^T \hat{H}_k \mathbf{x} \mathbf{x}^T \hat{H}_k \mathbf{x})$$

Constraints:

 $\mathbf{l}\mathbf{b} \leq \mathbf{x} \leq \mathbf{u}\mathbf{b}$

- Ib is the min thermal TSV density ddetermined by the foundry process limitation
- ub is the max thermal TSV density determined by temperature reduction sensitivity function as well as the maximum allowed chip overhead

Nonlinear OPT of 3D CLK Skew by Dummy TSV Insertion: Problem Formulation II

Chip Gridding (M x N)

Benchmark Circuit RC Extraction

Dummy TSV Insertion Sensitivity

Sensitivity of temperature reduction w.r.t. dummy TSV density

 $\frac{\partial T}{\partial \eta} = \frac{\Delta T_0 \cdot \eta_0}{(\eta_0 + \eta)^2}$

• $\Delta T_0 = \frac{P \cdot l}{A \cdot \sigma_0}$ is relative chip temperature without dummy TSV insertion,

- $\eta_0 = rac{\sigma_0}{\sigma_{TSV} \sigma_0}$ is threshold density of dummy TSV.
- Constant sensitivity is achieved when $\eta < <\eta_0$.
- Sensitivity is approaching zero when $\eta >> \eta_0$

Nonlinear OPT of 3D CLK Skew by Dummy TSV Insertion: Conjugate-gradient Solution

 Original problem is relaxed with Lagrange penalty factor to remove the inequality constraint

 $min: f^*(\mathbf{x}) = f(\mathbf{x}) + \lambda \cdot h^2(\mathbf{x})$ where $h(\mathbf{x}) = \begin{cases} 0, & \text{lb} \le \mathbf{x} \le \mathbf{ub} \\ \rho \gg 0, & \text{otherwise} \end{cases}$

- Conjugate gradient method iteratively searches along the gradient drop reduction to find the x which minimizes f*(x).
- Problem is solved multiple times with properly selected x₀ to avoid local minimum

Nonlinear Electrical-thermal Coupling by Signal TSVs

Nonlinear temperature-dependent Nonlinear temperature-dependent **TSV** capacitance

TSV delay

Measurement result [4] shows non-linear TSV capacitance

Delay introduced by non-linear TSV model shows large difference from linear model at high temperature

[4] G. Katti and et al., "Temperature dependent electrical characteristics of through-si-via (tsv) interconnections," in IITC, 2010.

Temperature Reduction by Dummy TSVs

- COMSOL multi-physics simulator for thermal analysis
- A 4-tier 3D-IC test case : Tier thickness: 40µm; Thermal TSV has a diameter of 15µm; Heat sink conductance: 1.24 × 10⁵ W/(K · m²)
- Chip temperature is linearly reduced by increasing thermal TSV density

Dummy TSV Insertion for 3D Clock Skew Reduction: Set-up I

- Two generalized 4-Tier 3D IC H-Trees designed
- IBM clock-tree benchmarks r1r5 [5] synthesized to 4-tier 3D clock-tree [6]
- 3D-IC chip divided into 64x64 grids for dummyTSV insertion

[5] "Ibm clock tree benchmarks," <u>http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/</u>.
[6] X. Zhao, J. Minz, and S. K. Lim, "Low-power and reliable clock network design for through-silicon via (tsv) based 3d ics," IEEE Trans. on Components, Packaging, and Manufacturing Technology, vol. 1, no. 2, pp. 247 –259, feb 2011.

H-Tree 2 (28TSV location)

Dummy TSV Insertion for 3D Clock Skew Reduction: Set-up II

- HotSpot [7] is used to extract the temperature distribution at each location
- Temperature distribution is calculated from the average input of all SPEC2000
 benchmarks [8]
- Maximal thermal TSV density is limited to Tiel
 be lower than 7% of the local grid area.
- Different signal TSV-bundles T2,T4, T8
 and T10 are deployed with number of 2,
 4, 8 and 10 TSVs

^{[7] &}quot;Hotspot: <u>http://lava.cs.virginia.edu/hotspot/</u>."[8] http://www.spec.org/cpu2000/

Dummy TSV Insertion for 3D Clock Skew Reduction: Result I

H-Tree 1 clock skew comparison before and after TSV insertion

Dummy TSV Insertion for 3D Clock Skew Reduction: Result II

Synthesized 3D Clock Tree of Benchmark r5

Dummy TSV Insertion for 3D Clock Skew Reduction: Result III

htree1	(14 Signal TSV locations)									
Туре	Orig	Lin	Impr%	Time(s)	Nonlin	Impr%	Time(s)			
Т2	15.34	10.02	34.70%	14.29	2.59	83.10%	57.95			
Т4	26.44	8.67	67.20%	14.19	4.48	83.10%	57.9			
Т8	47.42	12.1	74.50%	14.58	8.14	82.80%	58.81			
Т10	58.42	15.1	74.20%	15.35	10.19	82.60%	58.84			
Mean	-	-	62.60%	14.6	-	82.90%	58.38			
htree2	(28 Signal TSV locations)									
Туре	Orig	Lin	Impr%	Time(s)	Nonlin	Impr%	Time(s)			
Т2	23.48	8.69	63.00%	13.98	3.57	84.80%	56.95			
Т4	43.97	12.4	71.80%	14.02	5.38	87.80%	57.12			
Т8	82.76	16.18	80.40%	13.92	9.35	88.70%	58.87			
Т10	103.1	17.69	82.80%	13.93	11.44	88.90%	57.58			
Mean	-	-	74.50%	13.96	-	87.50%	57.63			
r1	(45 Signa	l TSV loca	tions)							
Туре	Orig	Lin	Impr%	Time(s)	Nonlin	Impr%	Time(s)			
Т2	30.5	18.4	39.70%	41.5	15.34	49.70%	106.6			
Т4	61.87	36.29	41.30%	29.3	27.5	55.60%	158.4			
Т8	121.1	71.39	41.60%	31.9	57.1	52.80%	170.5			
Т10	152.7	91.1	40.30%	37.2	74.26	51.40%	108.1			
Mean	-	-	40.70%	35	-	52.40%	135.9			
r2	(60 Signal TSV locations)									
Туре	Orig	Lin	Impr%	Time(s)	Nonlin	Impr%	Time(s)			
Т2	35.13	23.6	32.80%	134	20.2	42.50%	389			
Т4	69.75	48.31	30.70%	102.8	37.9	45.70%	393.8			
Т8	134.7	94.67	29.70%	106.5	74	45.10%	705.8			
T10	169	119.3	29.40%	139.3	93.82	44.50%	325.6			
Mean	-	-	30.70%	120.7	-	44.50%	453.6			

r3	(75 Signal TSV locations)							
Туре	Orig	Lin	Impr%	Time(s)	Nonlin	Impr%	Time(s)	
Т2	32.36	20.92	38.40%	220.7	19.5	39.70%	749.5	
Т4	64.8	41.02	36.70%	170.8	34.3	47.10%	451	
Т8	125.6	80.29	36.10%	177.8	66.9	46.70%	745.4	
T10	157.7	100.7	36.20%	231	85.8	45.60%	436.7	
Mean	-	-	36.90%	200.1	-	44.80%	595.7	
r4	(90 Signal TSV locations)							
Туре	Orig	Lin	Impr%	Time(s)	Nonlin	Impr%	Time(s)	
Т2	31.68	18.63	41.20%	211.8	17.63	44.00%	890.6	
Т4	64.57	38.3	40.70%	232.2	30.1	53.40%	557.8	
Т8	126.8	75.38	40.60%	233.4	69.8	45.00%	707.5	
T10	159.8	93.1	41.70%	327.6	80	50.10%	564.7	
Mean	-	-	41.10%	251.2	-	48.10%	680.2	
r5	(90 Signal TSV locations)							
Туре	Orig	Lin	Impr%	Time(s)	Nonlin	Impr%	Time(s)	
Т2	35	21.5	38.60%	665.6	19.9	42.60%	1963	
Т4	68.4	39	43.00%	695	33.62	50.90%	1716	
Т8	131	77.9	40.50%	725.2	65.2	50.20%	1694	
T10	164.1	97	40.90%	938.5	80.13	51.20%	1750	
Mean	-	-	40.80%	756.1	-	48.70%	1781	
Overall			46.8%	58.4%				

58.4% clock-skew reduction

 11.6% higher clock-skew from non-linear model than linear model

Conclusions

- Physics-based electrical-thermal models for both signal and (dummy) thermal TSVs are provided with the consideration of nonlinear temperature dependence: liner is important to form a nonlinear CAP for delay
- One nonlinear programming problem is formulated to reduce clock-skew by dummy TSVs insertion for the thermal-reliable 3D clock-tree synthesis
- Under realistic nonlinear TSV models, insertion of dummy TSV can effectively reduce the clock-skew by 58.4% on average, which is also 11.6% higher clock-skew reduction on average than using the linear model

Electrical-Thermal-Stress-Coupling to 3D Clock

- Stress needs to be considered in 3D clock distribution network of surrounding transistors
- Insertion of dummy TSVs reduce the chip temperature and improve the transistor carrier mobility

Experiment Results with Electrical-Thermal-Stress-Coupling

Tuno	Htree1 (14 Signal TSVs)									
туре	orig	Lin	Impr%	Time	Non Lin	Impr	Time			
Т2	15.39	9.54	38.01%	16.98	2.45	84.08%	76.15			
Т4	26.62	8.07	69.68%	16.85	3.92	85.27%	77.11			
Т8	47.41	11.38	76.00%	17.05	7.03	85.17%	77.19			
T10	58.64	14.8	74.76%	17.22	10.02	82.91%	77.36			
			64.61%	17.025		84.36%	76.9525			
Tupo	Htree2 (28 Signal TSVs)									
Type	orig	Lin	Impr%	Time	Non Lin	Impr%	Time			
Т2	23.55	8.15	65.39%	17.41	3.31	85.94%	79.02			
Т4	44.13	11.61	73.69%	17.51	4.81	89.10%	79.59			
Т8	82	14.6	82.20%	17.4	9	89.02%	79.98			
T10	103.7	15.5	85.05%	17.49	9.51	90.83%	79.32			
			76.58%	17.4525		88.72%	79.4775			
Туро	r1 (45 Signal TSVs)									
Type	orig	Lin	Impr%	Time	Non Lin	Impr%	Time			
Т2	30.5	17.4796	42.69	41.5	14.4612	52.59	127.2951			
Т4	61.87	32.6635	47.21	29.3	25.5463	58.71	164.0101			
Т8	121.1	66.137	45.39	31.9	53.1844	56.08	182.709			
T10	152.7	83.557	45.28	37.2	69.1715	54.70	197.4859			
Mean	-	-	45.14	34.975	-	55.52	167.875			
Туре	r2 (60 Signal TSVs)									
	orig	Lin	Impr%	Time	Non Lin	Impr%	Time			
Т2	35.13	23.481	33.16	134	19.3329	44.97	475.3568			
T4	69.75	46.2756	33.66	102.8	34.1747	51.00	485.1885			
Т8	134.7	86.8894	35.49	106.5	71.0108	47.28	490.5759			
T10	169	118.8894	29.65	139.3	88.0831	47.88	513.4299			
Mean	-	-	32.99	120.65	-	47.78	491.1378			

Туре	r3 (75 Signal TSVs)								
	orig	Lin	Impr%	Time	Non Lin	Impr%	Time		
Т2	32.36	20.1915	37.60	220.7	19.2129	40.63	751.53		
Т4	64.8	39.969	38.32	170.8	31.1747	51.89	682.8994		
Т8	125.6	79.8619	36.42	177.8	60.707	51.67	658.8006		
T10	157.7	95.4677	39.46	231	82.7985	47.50	708.3861		
Mean	-	-	37.95	200.075	-	47.92	700.404		
Tuno	r4 (90 Signal TSVs)								
туре	orig	Lin	Impr%	Time	Non Lin	Impr%	Time		
Т2	31.68	17.9695	43.28	211.8	16.5271	47.83	912.3927		
T4	64.57	36.2087	43.92	232.2	26.1332	59.53	844.4599		
Т8	126.8	70.6158	44.31	233.4	64.4995	49.13	898.2112		
T10	159.8	88.811	44.42	327.6	76.8253	51.92	909.2504		
Mean	-	-	43.98	251.25	-	52.10	891.0786		
Tuno	r5 (90 Signal TSVs)								
туре	orig	Lin	Impr%	Time	Non Lin	Impr%	Time		
Т2	35	21	40.00	665.6	18.9	46.00	1992.597		
T4	68.4	38.4	43.86	695	28.5	58.33	1843.766		
Т8	131	74.6	43.05	725.2	63.8	51.30	1705.817		
T10	164.1	93.4	43.08	938.5	79.434	51.59	1934.662		
Mean	-	-	42.50	756.075	-	51.81	1869.21		
Overall	-	-	49.10%		-	61.30%			

- 61.3% clock-skew reduction
- 12.2% higher clock-skew from non-linear model than linear model

Thank You!

Please send comments to haoyu@ntu.edu.sg http://www.ntucmosetgp.net