
A Computational Model for

SAT-based Verification

of

Hardware-Dependent Low-Level

Embedded System Software

Bernard Schmidt, Carlos Villarraga, Jörg Bormann,

Dominik Stoffel, Markus Wedler, Wolfgang Kunz

 Yokohama, 1/25/2013

 Motivation

 Related Works

 Model Generation

 Basis: Abstract HW/SW Model

 Flow

 Advantages of Model

 Experiment

 Conclusion / Future Work

2

Content

 Embedded System Close interaction
between HW and SW

 Examples: drivers,
communication
structures

 Goal

 Formal verification (FV) of combined HW/SW behavior

 Objective of this work

 Computational model and algorithms for

FV of hardware-dependent, low-level software

Motivation

 [2] R. Jhala and R. Majumdar, “Software model checking,” ACM Comput. Surv., vol. 41, pp. 21:1–21:54, October 2009.

 [3] T. Ball, A. Podelski, and S. K. Rajamani, “Boolean and Cartesian Abstraction for Model Checking C Programs,” in Proceedings of the

7th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, ser. TACAS 2001. London, UK:

Springer-Verlag, 2001, pp. 268–283.

 [4] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software model checker Blast: Applications to Software Engineering,” Int.

J. Softw. Tools Technol. Transf., vol. 9, pp. 505–525, October 2007.

 [5] P. Godefroid, “Model Checking for Programming Languages using VeriSoft,” in Proceedings of the 24th ACM SIGPLAN-SIGACT

Sympo-sium on Principles of Programming Languages, ser. POPL ’97. New York, NY, USA: ACM, 1997, pp. 174–186.

 [6] K. Havelund and Thomas Pressburger, “Model Checking Java Programs Using Java PathFinder,” International Journal on Software

Tools for Technology Transfer STTT, vol. 2, no. 4, pp. 366–381, 2000.

 [7] G. J. Holzmann, “The model checker spin,” IEEE Transactions On Software Engineering, 1997.

 [8] D. Babic and A. J. Hu, “Calysto: scalable and precise extended static checking,” in Proceedings of the 30th International Conference on

Software Engineering, ser. ICSE ’08. New York, NY, USA: ACM, 2008, pp. 211–220.

 [9] F.Ivancic, Z. Yang, M. Ganai, A. Gupta, and P. Ashar, “Efficient SATbased bounded model checking for software verification,” in Proc.

In- ternational Symposium on Leveraging Applications of Formal Methods, 2004.

 [10] E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of C and Verilog programs using Bounded Model Checking,” in

Proceedings of the 40th annual Design Automation Conference, ser. DAC ’03. New York, NY, USA: ACM, 2003, pp. 368–371.

 [11] D. W. Currie, A. J. Hu, and S. Rajan, “Automatic formal verification of DSP software,” in Proceedings of the 37th Annual Design

Automation Conference, ser. DAC ’00. New York, NY, USA: ACM, 2000, pp. 130–135.

 [12] B. Schlich, “Model checking of software for microcontrollers,” ACM Trans. Embed. Comput. Syst., vol. 9, no. 4, pp. 36:1–36:27, Apr.

2010.

 [13] C. S. Păsăreanu and W. Visser, “A survey of new trends in symbolic execution for software testing and analysis,” Int. J. Softw. Tools

Technol. Transf., vol. 11, no. 4, pp. 339–353, Oct. 2009.

 [14] T. Arons, E. Elster, S. Ozer, J. Shalev, and E. Singerman, “Efficient symbolic simulation of low level software,” in Design, Automation

and Test in Europe, 2008. DATE ’08, march 2008, pp. 825 –830.

 [15] M. D. Nguyen, M. Wedler, D. Stoffel, and W. Kunz, “Formal Hardware/Software Co-Verification by Interval Property Checking with

Abstraction,” in Proceedings of the 48th Design Automation Conference, ser. DAC ’11. New York, NY, USA: ACM, 2011, pp. 510–515.

 [16] D. Große, U. Kühne, and R. Drechsler, “HW/SW co-verification of embedded systems using bounded model checking,” in GLSVLSI

’06: Proceedings of the 16th ACM Great Lakes symposium on VLSI, 2006, pp. 43–48.

 [17] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic model checking using SAT procedures instead of BDDs,” in Proc.

International Design Automation Conference (DAC), June 1999, pp. 317–320
4

Related Works

 Large research body

on SW verification

 Our focus:

New computational model for

hardware-dependent SW

E.g.,

 M. D. Nguyen, M. Wedler, D. Stoffel, and W. Kunz, “Formal Hardware/Software Co-

Verification by Interval Property Checking with Abstraction” DAC 2011.

 D. Große, U. Kühne, and R. Drechsler, “HW/SW co-verification of embedded systems

using bounded model checking” in GLSVLSI ’2006.

5

State of the Art: Bounded Model Checking (BMC)

 program flow (instruction sequencing) as given by the

program is represented only implicitly (by PC + memory)

 program computation also is represented only implicitly

(by hardware implementation of CPU)

 High computational complexity for realistic designs

Basic approach:

Unroll CPU + software in memory

E.g.,

 C. S. Păsăreanu and W. Visser, “A survey of new trends in symbolic execution for

software testing and analysis” Int. J. Softw. Tools Technol. Transf., 2009.

 T. Arons, E. Elster, S. Ozer, J. Shalev, and E. Singerman, “Efficient symbolic simulation

of low level software” DATE 2008

6

State of the Art: Symbolic Execution

 program flow is enumerated explicitly (by path enumeration)

 program computation is represented explicitly (through symbolic

formulas)

 high complexity of symbolic formulas

Basic approach

 Enumerate program execution paths and check conditions for

verification along these paths by specialized verification algorithms

 Symbolic formulas explicitly represent all possible input scenarios

(along path)

E.g.,

 E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of C and Verilog programs

using Bounded Model Checking” DAC 2003

7

State of the Art: CBMC and related work

Basic approach

 Build a SAT formula for the program computation based on

CFG unrolling

 SAT formula contains information about control flow only

implicitly in terms of functional dependencies between

variables of the formula

 HW-independent paradigm (high-level programming language)

E.g.,

 E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of C and Verilog programs

using Bounded Model Checking” DAC 2003

8

State of the Art: CBMC and related work

 Extension of CBMC for HW-dependent software is difficult!

The computational model (SAT formula):

 lacks information about temporal relationships between

statements/instructions as is needed when relating program

behavior to HW periphery

 cannot be integrated with environment hardware model

 is not compositional

Our Approach

9

New hardware-dependent computational model

 Program computation should be represented implicitly

 compact model

 Program flow should be represented explicitly

 facilitates SAT reasoning (since global information about

global execution paths is explicitly available)

 Representation of the temporal dependencies between

instructions and I/O

 enables HW-dependent verification

 enables compositionality of model

Program

Counter

Input Ports

Output Ports

Instruction

Logic

Program

Data Path

Program Control
w

a

Program

State

(AS, memory

variables)

d
e

s
ti
n

a
ti
o

n

ju
m

p

10

Basis: Abstract HW/SW Model

Program

Counter

Input Ports

Output Ports

Instruction

Logic

Program

Data Path

Program Control
w

a

Program

State

(AS, memory

variables)

d
e

s
ti
n

a
ti
o

n

ju
m

p

 Instruction Logic:

ADD

ROT

MUL

MOV

LOAD

BEQ
...

PS’PS

a

w

Output Ports

w

(icode)

(PC)

Input Ports

D J

11

Basis: Abstract HW/SW Model

Instruction Cell

program state

new

program state

 Abstract model for a CPU

instruction

 Hardware-dependent

 Describes the modification of the

program state

 Can be formally verified against

RTL implementation of CPU

12

Program State

program state

new

program state

 Registers

 Control signals in the CPU

 Program data in RAM

 “Active” signal (program flow

variable)

13

 Additional 1-bit signal in program state

 Signal is asserted if corresponding program state

belongs to active execution path

 Additional logic in instruction cells to handle active

signal:

 Datapath and load/store instructions:

propagate active flag from input state to output state

(no extra logic required)

 Branch instructions: propagate active flag depending on

branch condition from input state to branch target output

state. All other output states are set inactive.

Active Signal

14

CFG 1st step 2nd step Final EXG

always

inactive?

always

inactive?

always

inactive!

Execution graph:

 Models all possible execution paths

 Optimized by pruning and merging

 Not unique
15

Transform CFG to Execution Graph (EXG)

 Branch instruction

 Propagates “active” signal to exactly

one of the branches

 Generated property:

 Claim: “active” signal is never

asserted

 Property holds: branch never taken

 Property does not hold: branch is

taken in some executions

program state

taken
not

taken

16

Verifying if a branch is active

 PN generation

 Replace every EXG node by an

instruction cell

 HW-dependent description of

program computation

 Insert merge cells

 Merge cell

 Merges two paths into one

 Path is selected by incoming

active signal

17

Program Netlist (PN)

 PN is a combinational circuit

 CFG-based unrolling

 Concatenation of instruction cells

18

 Explicitly represented program flow

 Implicitly represented program computation

 Supports SAT-based FV

Replacing EXG nodes by instruction cells

Advantages of PN Model

Explicit program flow:

program paths are considered separately

19

Advantages of PN Model (2)

 Simplification of program computation

 CPU logic is simplified to single instruction cell

 Machine instruction parameters are constant:

individual instruction cell is further simplified by

Boolean constraint propagation

 Simplification takes place during PN generation

(not during property verification)

 Active flags:

 Small set of signals captures global reachability

information of entire program

 Valuation on active signals selects possible execution

paths or sets of execution paths

 Helps SAT solver to take into account reachability without

detailed reasoning on all intermediate instructions

 Example:

20

Advantages of PN Model (3)

Property:

A: = true

C: if b.active

 then b=a

a b

 Industrial automotive design

 1309 lines of C code

 Send/receive message frames via UART

 Interrupt-driven

 Compiled for SuperH2 based 32-bit CPU, RISC

architecture, 5-stage pipeline

21

Experiment – Software LIN Master (1)

Program #instructions CPU mem.

component CFG PN (s) (MB)

LIN-Init 225 385 1.32 36

LIN-Scheduler 85 84 0.13 27

LIN-ISR 790 1138 11.00 102

22

 Model generation:

 Interrupt Service Routine (ISR), main program

(scheduler) and initialization generated automatically

 Composed model: assembled manually

Experiment – Software LIN Master (2)

Property CPU(s) MEM(MB)

RX frame 4or8 data bytes incl. checksum 17 1641

RX frame 4or8 data bytes wrong checksum 28 1545

TX frame 4or8 data bytes incl. Checksum 15 1584

Wrong PID or not matching ID (8bytes) 14 1566

Property verification:

 Composed model: 24001 instructions, 62592 primary inputs

 Verify correct generation of LIN frame

 (header, data, checksum and control signal for UART)

 Commercial HW property checker (OneSpin 360MV)

Experiment – Software LIN Master (3)

 Program netlist (PN)

 New hardware-dependent model for low-level software

verification combining the advantages of HW-style

bounded model checking and SW-style symbolic

execution

 Automatic PN generation successful for industrial

automotive software

 Future Work

 Equivalence checking

 Integrate PN with hardware for FV of firmware

24

Conclusion

 Questions?

bschmidt@eit.uni-kl.de

Thank you!

