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Content 



 Embedded System  Close interaction 
between HW and SW 

 Examples: drivers, 
communication 
structures 

 Goal 

 Formal verification (FV) of combined HW/SW behavior 

 

 Objective of this work 

 Computational model and algorithms for 

FV of hardware-dependent, low-level software 

Motivation 
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Related Works 

 Large research body  

on SW verification 

 Our focus:  

New computational model for 

hardware-dependent SW 



E.g.,  

 M. D. Nguyen, M. Wedler, D. Stoffel, and W. Kunz, “Formal Hardware/Software Co-

Verification by Interval Property Checking with Abstraction”  DAC  2011. 

 D. Große, U. Kühne, and R. Drechsler, “HW/SW co-verification of embedded systems 

using bounded model checking” in GLSVLSI ’2006.  
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State of the Art: Bounded Model Checking (BMC) 

 program flow (instruction sequencing) as given by the 

program is represented only implicitly (by PC + memory) 

 program computation also is represented only implicitly 

(by hardware implementation of CPU) 

 High computational complexity for realistic designs 

Basic approach:  

Unroll CPU + software in memory 



E.g.,  

 C. S. Păsăreanu and W. Visser, “A survey of new trends in symbolic execution for 

software testing and analysis” Int. J. Softw. Tools Technol. Transf., 2009. 

 T. Arons, E. Elster, S. Ozer, J. Shalev, and E. Singerman, “Efficient symbolic simulation 

of low level software” DATE 2008 
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State of the Art: Symbolic Execution 

 program flow is enumerated explicitly (by path enumeration) 

 program computation is represented explicitly (through symbolic 

formulas) 

 high complexity of symbolic formulas  

Basic approach 

 Enumerate program execution paths and check conditions for 

verification along these paths by specialized verification algorithms 

 Symbolic formulas explicitly represent all possible input scenarios 

(along path) 



E.g., 

 E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of C and Verilog programs 

using Bounded Model Checking” DAC 2003 
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State of the Art: CBMC and related work 

Basic approach 

 Build a SAT formula for the program computation based on 

CFG unrolling 

 SAT formula contains information about control flow only 

implicitly in terms of functional dependencies between 

variables of the formula 

 HW-independent paradigm (high-level programming language) 



E.g., 

 E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of C and Verilog programs 

using Bounded Model Checking” DAC 2003 
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State of the Art: CBMC and related work 

 Extension of CBMC for HW-dependent software is difficult!  

 
The computational model (SAT formula): 

 lacks information about temporal relationships between 

statements/instructions as is needed when relating program 

behavior to HW periphery 

 cannot be integrated with environment hardware model 

 is not compositional 



Our Approach 
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New hardware-dependent computational model 

 

 Program computation should be represented implicitly 

 compact model 

 Program flow should be represented explicitly 

 facilitates SAT reasoning (since global information about 

global execution paths is explicitly available) 

 Representation of the temporal dependencies between 

instructions and I/O 

 enables HW-dependent verification  

 enables compositionality of model 
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Basis: Abstract HW/SW Model 
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Basis: Abstract HW/SW Model 



Instruction Cell 

program state 

new 

program state 

 

 Abstract model for a CPU 

instruction 

 Hardware-dependent 

 Describes the modification of the 

program state 

 Can be formally verified against 

RTL implementation of CPU  
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Program State 

program state 

new 

program state 

 Registers 

 Control signals in the CPU 

 Program data in RAM 

 “Active” signal (program flow 

variable) 
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 Additional 1-bit signal in program state 

 Signal is asserted if corresponding program state 

belongs to active execution path 

 Additional logic in instruction cells to handle active 

signal: 

 Datapath and load/store instructions: 

propagate active  flag from input state to output state 

(no extra logic required) 

 Branch instructions: propagate active  flag depending on 

branch condition from input state to branch target output 

state. All other output states are set inactive. 

Active Signal 
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CFG 1st step 2nd step Final EXG 

always  

inactive? 

always  

inactive? 

always  

inactive! 

Execution graph: 

 Models all possible execution paths 

 Optimized by pruning and merging 

 Not unique 
15 

Transform CFG to Execution Graph (EXG) 



 Branch instruction 

 Propagates “active” signal to exactly 

one of the branches 

 

 Generated property: 

 Claim: “active” signal is never 

asserted 

 Property holds: branch never taken 

 Property does not hold: branch is 

taken in some executions 

 

program state 

taken 
not 

taken 
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Verifying if a branch is active 



 PN generation 

 Replace every EXG node by an 

instruction cell 

 HW-dependent description of 

program computation 

 Insert merge cells 

 

 Merge cell 

 Merges two paths into one 

 Path is selected by incoming 

active signal 
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Program Netlist (PN) 



 PN is a combinational circuit  

 

 

 CFG-based unrolling 

 

 

 Concatenation of instruction cells 
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 Explicitly represented program flow 

 Implicitly represented program computation 

 Supports SAT-based FV 

Replacing EXG nodes by instruction cells 

Advantages of PN Model 



Explicit program flow:  

program paths are considered separately 
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Advantages of PN Model (2) 

 Simplification of program computation 

 CPU logic is simplified to single instruction cell 

 Machine instruction parameters are constant: 

individual instruction cell is further simplified by 

Boolean constraint propagation   

 Simplification takes place during PN generation 

(not during property verification) 



 Active flags: 

 Small set of signals captures global reachability 

information of entire program 

 Valuation on active signals selects possible execution 

paths or sets of execution paths 

 Helps SAT solver to take into account reachability without 

detailed reasoning on all intermediate instructions 

 Example: 
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Advantages of PN Model (3) 

Property:  

A:     = true 

C:  if b.active 

      then b=a 

a b 



 Industrial automotive design 

 1309 lines of C code 

 Send/receive message frames via UART 

 Interrupt-driven 

 Compiled for SuperH2 based 32-bit CPU, RISC 

architecture, 5-stage pipeline 
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Experiment – Software LIN Master (1) 



Program  #instructions     CPU  mem. 

component CFG PN (s) (MB) 

LIN-Init 225 385 1.32 36 

LIN-Scheduler 85 84 0.13 27 

LIN-ISR 790 1138 11.00 102 
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 Model generation: 

 Interrupt Service Routine (ISR), main program 

(scheduler) and initialization generated automatically 

 Composed model: assembled manually  

Experiment – Software LIN Master (2) 



Property  CPU(s)    MEM(MB) 

RX frame 4or8 data bytes incl. checksum 17 1641 

RX frame 4or8 data bytes wrong checksum 28 1545 

TX frame 4or8 data bytes incl. Checksum 15 1584 

Wrong PID or not matching ID (8bytes) 14 1566 

Property verification:  

 Composed model: 24001 instructions, 62592 primary inputs 

 Verify correct generation of  LIN frame 

   (header, data, checksum and control signal for UART) 

 Commercial HW property checker (OneSpin 360MV) 

 

Experiment – Software LIN Master (3) 



 Program netlist (PN) 

 New hardware-dependent model for low-level software 

verification combining the advantages of HW-style 

bounded model checking and SW-style symbolic 

execution 

 Automatic PN generation successful for industrial 

automotive software 

 Future Work 

 Equivalence checking 

 Integrate PN with hardware for FV of firmware 
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Conclusion 
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