
Reviving Erroneous Stability-

based Clock-gating using

Partial Max-SAT

University of Toronto

Bao Le

Dipanjan Sengupta

Andreas Veneris

Outline

• Partial Max-SAT Debugging

• Clock-gating
Introduction

• Components in a Clock-gating Design.

• Identifying the Erroneous Component(s).

Pre-
Processing

• Clock-gating Debugging

• Rectification Debugging

• Experimental Results
Results and

Final Remarks

1

Outline

• Partial Max-SAT Debugging

• Clock-gating
Introduction

• Components in a Clock-gating Design.

• Identifying the Erroneous Component(s).

Pre-
Processing

• Clock-gating Debugging

• Rectification Debugging

• Experimental Results
Results and

Final Remarks

2

Introduction

Clock-gating

-Popular low-power
technique

-ODC and STC-based

STC-based Clock-gating

-Register output is
stable

-Complex and
susceptible to errors

Debugging

-Common practice is to
remove clock-gating

-Power saving is
reduced

• Reduce debugging time by using Partial Max-SAT.

• While fixing the error(s) still retain power savings.

• Overall, 12% improvement in runtime and 98% power savings retained.

Contribution:

4

Introduction: Stability Condition

A register is said to be stable when its output does not change
for two or more consecutive clock-cycles, i.e 𝑞𝑡 = 𝑞𝑡

_1.

d
e

clk

q

R

R is stable when e = 0

5

Introduction: STC Clock-gating

d
e

clk

q

R

• The clock is turned off when e = 0 by using an AND gate.

• e is called an enable signal for clock of R.

Automatically extracted

Implemented automatically

ODC

Hard to identify

Implemented manually

STC

6

Introduction: Partial Max-SAT

• Given an unsatisfiable CNF instance, Max-SAT solver returns an
assignment that maximizes the number of satisfiable clauses.

Max-SAT

• In Partial Max-SAT, the instance is organized as a set of hard
clauses which must be satisfied and a set of soft clauses which
may or may not be satisfied.

• The goal is to satisfy all hard clauses while maximizing the
number of satisfied soft clauses.

Partial Max-SAT

7

Introduction: Design Debugging

Given an erroneous
circuit, a counter

example of length 𝐤,
and error cardinality

𝐍.

Goal: Return shortlist of
potentially buggy gates
(solutions)

• Gates that can be modified to fix
counter-example

SAT-based Design Debugging
Fault diagnosis and logic debugging using Boolean Satisfiability

[Smith, Veneris, Ali, Viglas-TCAD2005]

8

Introduction: Partial Max-SAT

Debugging

• In this instance, constraints are encoded as hard clauses while the
transition relation 𝑇𝑒𝑛 are encoded as soft clauses.

• The complement of a Partial Max-SAT solution presents a set of
clauses that correspond to potentially erroneous gates.

• All solutions with cardinality ≤ 𝑁 are found by using blocking
clauses.

Design debugging problem can be encoded as a
Partial Max-SAT instance.

9

Outline

• Partial Max-SAT Debugging

• Clock-gating
Introduction

• Components in Clock-gating design.

• Identifying the Erroneous Component(s).

Pre-
Processing

• Clock-gating Debugging

• Rectification Debugging

• Experimental Results
Results and

Final Remarks

10

Clock-gating Design

 Typically, there are three components in a clock-gating design

𝐶.

Combinational Circuitry

R1

x1

x2

xn

y1

y2

ym

clk e1

Rz

Clock-gating Circuitry

11

Clock-gating Design

• Includes all nodes that are only used for clock-gating (i.e only
used to compute enable signals).

Clock-gating Circuitry

• All other nodes that are not registers.

Combinational Circuitry

• All registers in the design.

State Elements

12

Pre-processing

 We first construct an enhanced version of 𝐶called 𝐶𝑒𝑛 by

removing all clock-gating.

Combinational Circuitry

R1

x1

x2

xn

y1

y2

ym

clk e1

Rz

Clock-gating Circuitry

13

Pre-processing

 We first construct an enhanced version of 𝐶called 𝐶𝑒𝑛 by

removing all clock-gating.

Combinational Circuitry

R1

x1

x2

xn

y1

y2

ym

clk

Rz

14

Pre-processing

Given the same trace of length k, if 𝐶 and 𝐶𝑒𝑛 produce the same
states and outputs for all time-frame 𝑡 ≤ 𝑘, the erroneous gate
is in the combinational circuitry.

• All other components are bug-free (reliable) components

• These components can be set as hard clauses.

• The increase in number of hard clauses helps reducing the
complexity of the Partial Max-SAT instance.

After the combination circuitry is identified as
erroneous component:

15

Erroneous Component Identification

Construct 𝐶𝑒𝑛 from 𝐶 by removing all clock-gating and connect clk to all
register clocks.

Simulate 𝐶 and 𝐶𝑒𝑛 using the counter-example

If the output and state of 𝐶 and 𝐶𝑒𝑛 at all time-frame are the same, the
erroneous gate is in the combinational circuitry

16

Outline

• Partial Max-SAT Debugging

• Clock-gating
Introduction

• Components in a Clock-gating Design.

• Identifying the Erroneous Component(s).

Pre-
Processing

• Clock-gating Debugging

• Rectification Debugging

• Experimental Results
Results and

Final Remarks

17

Partial Max-SAT Debugging

Encode 𝐷𝑒𝑏𝑢𝑔 as a CNF instance. The instance is unsatisfiable since
𝐶 is erroneous

Using information from the pre-processing step, all clauses that
belong to reliable components are set as hard clauses.

The Max-SAT solver finds all solutions with cardinality ≤ 𝑁 by
using blocking clauses.

To increase the number of hard clauses in each call to the Partial Max-SAT solver,

we also apply sliding window technique.

18

Rectification

Designer usually removes clock-gating to fix the error(s) introduced during
clock-gating implementation.

• This is due to stringent time-to-market and finding error at gate-level is
an arduous task.

• However, this is undesirable as it reduces power savings

Clock-gating circuitry is usually small in number of gates involved and
constructed from a limited set of gates

• We derive a dictionary-based rectification technique for nodes in clock-
gating circuitry.

• Our fix corrects the erroneous behavior presented by the counter-example
while maintaining certain level of power saving in the design.

19

Potential Fixes

• This can be verified by simulating the circuit after applying the
fix.

It must correct the erroneous behavior presented
by the counter-example

• This is verified by using power estimation tool.

It must not consume more power than removing
clock-gating

• This can be done by using Sequential Equivalent Checking
(SEC). However, this method is costly.

• We present a light-weight verification method for this property.

It must not introduce new error(s)

20

Rectifications (cont.)

Recall that the clock of a clock-gated register is controlled by enable signal “e”.

The following property ensures that no new error(s) is introduced:

e

clk

efix

Erroneous enable

signal

Enable signal after the

fix is applied

e = 1  efix = 1

R

clk

R

21

Overall Algorithm

• Run pre-processing step to identify reliable
components. 1

• Encode the problem in CNF and solve it as
a Partial Max-SAT instance.

• Find all solutions with cardinality ≤ 𝑁
2

• Rectification is run for erroneous gate in
clock-gating circuitry.

• Only potential fixes are returned to the user.
3

22

Outline

• Partial Max-SAT Debugging

• Clock-gating
Introduction

• Components in a Clock-gating Design.

• Identifying the Erroneous Component(s).

Pre-
Processing

• Clock-gating Debugging

• Rectification Debugging

• Experimental Results
Results and

Final Remarks

23

Experimental Results

Platform: i5 3.1Ghz, 8GB memory, 2 hour time-
limit.

Benchmarks: 8 ISCAS-89 and 7 ITC-99 circuits. For
each, several bugs are injected to generate

debugging instances.

We run each instance with and without
preprocessing step. Rectifications are computed for

clock-gating gates.

We compare to a state-of-the-art Max-SAT-based
debugger [Chen, etal-TCAD’10]

24

Experimental Results (cont.)
Instance Name Preprocessing time (s)

s382_1 <1

s298_1 <1

s344_1 <1

s349_1 <1

s9234_1 <1

s1423_1 64

s838_1 1

s420_1 1

b03_1 1

b04_1 <1

b05_1 4

b07_1 1

b08_1 <1

b09_1 <1

b12_1 1

Preprocessing overhead

is neglectable.

25

Experimental Results (cont.)
Instance Name w/o Prepro(s) With Prepro (s) HC Improv(x) Runtime Improv (%)

s382_1 3 2 9.5 33.3

s298_1 13 10 19.8 23

s344_1 22 20 6.1 9

s349_1 9 9 5 0

s9234_1 467 378 1.9 19

s1423_1 TO TO 36.5 -

s838_1 TO 2135 17.2 ∞

s420_1 TO TO 15.4 -

b03_1 35 24 8.5 31.4

b04_1 115 105 4.5 8.7

b05_1 164 161 2.9 1.8

b07_1 1336 1282 11.3 4

b08_1 127 126 6 0.7

b09_1 240 230 10.4 4.1

b12_1 1665 1571 72.5 5.6

The increase in the

number of hard clauses

reduces the complexity

of the problem.

12 % reduction in

debugging time is

observed.

26

Experimental Results (cont.)
Instance Name Orig(microW) w/o cg(microW) With rect Improv (%)

s382_2 8.8 13.6 9.0 95.8

s298_2 4.78 5.5 5.34 22.2

s344_2 5.8 6.02 5.8 100

s349_2 5.8 6.0 5.8 100

s9234_2 69.7 69.9 69.7 100

s1423_2 38.1 40.7 NA -

s838_2 14.1 14.4 14.36 13.3

s420_2 7.45 8.33 7.46 98.8

b03_2 12.47 14.99 13.9 43.2

b04_2 57.03 62.9 57.03 100

b05_2 9.8 12.4 9.8 100

b07_2 15.8 18.3 15.8 100

b08_2 10.07 11.2 10.1 97.3

b09_2 15.1 15.3 15.16 70

b12_2 52.07 52.4 NA -

Our rectification technique

is able to retain all power-

savings in most cases.

Overall, 80% of the power-

savings are retained.

27

Summary

Overview

• A SAT-based debugging methodology for clock-gated
circuit is introduced, includes a preprocessing, a
debugging and a rectification step.

• The debugging time is reduced and the engineers do not
have to sacrifice power-savings to correct the error(s).

Future Work

• Improve the preprocessing step.

• Develop ODC condition debugging.

28

Questions/Discussions

29

