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Multi-core Processor in Embedded 
Systems 

 Embedded systems adopt multi-core processors due to 
performance, thermal and power constraints 

 Embedded systems have real-time constraints, e.g.,  time 
deadline of tasks 

 Shared Resources, like shared cache, make the timing 
difficult to estimate, e.g. Worst-Case Response Time 
(WCRT) analysis 

Core 1 Core 2 Core n …. 

Shared Resources 



Worst-Case Response Time 

 Tasks can be mapped to any core in a multi-core systems 

 The maximal latest finish time among all these tasks is 
the Worst-Case Response Time (WCRT) of the application 

 An important metric for schedulability analysis 

 Our purpose is to minimize WCRT in multi-core systems 
with shared cache via task mapping 

A multitasking  
application 
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Previous Task Mapping Approaches 

 

 They usually focus on balancing the workload 

 

 

 

 They are agnostic to the shared cache behavior 
– State-of-the-art works on shared cache usually fix task 

mapping before shared L2 cache analysis 

 

 



Motivating Example 

adpcm 

ndes minver 

crc compress 

Task graph Configuration:  
2-core,  private L1 cache: 256 bytes,  shared L2 cache: 2KB  
w/o L2 cache modeling:  
Assume cache miss (hit) for each L2 access in the worst (best) 
case 
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Task mappings 

w/o L2 cache modeling with L2 cache modeling

It is imperative to design a shared 
cache aware task mapping solution! 



Our Architecture 

 A private L1 cache for each core 

 All cores share a L2 cache   

 Tasks execute in a non-preemptive fashion 

Shared L2 cache 
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Private Cache Systems 

 

 

 

 

 

 Usually only the intra-task analysis is required to estimate 
the WCET (Worst-Case Execution Time) 

 

 No inter-core cache conflicts 

 
Cache 
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Shared Cache Multi-core Systems 

 Inter-core cache conflicts 

– Lead to extra L2 cache misses 

 This makes the timing analysis complex 
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Task Interference 

 Task lifetime : [Earliest Ready, Latest Finish] 

 Interfering tasks : Two tasks mapped to different cores 
with lifetime overlapped 

 Two tasks with dependence between them can never 
interfere with each other 

 

 

Time 
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Interfering tasks:   t2 and t3, t2 and t4 
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Current Efforts on Shared Cache 

 

 They focus on modeling cache and inter-core cache 
conflicts (Yan and Zhang RTAS 2008, Hardy and Puaut 
RTSS 2008 and  Liang et al. RTS 2012) 

 

 Task mapping is fixed (known) before analysis, and 
agnostic to the shared cache conflicts  

 

 



Impact of Task Mapping 

 Task interference 
– Two tasks can interfere with each other only when they are 

mapped to different cores  

 

 

 

 

 Workload balance among cores 
– Workload balance influences the total execution time of a 

multitasking application, thus impacts its WCRT 
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Our Aims  

 

 We target the task mapping problem in multi-core 
systems with shared cache, in order to optimize the 
WCRT 

 

 

 We not only consider workload balance, but also 
minimize inter-core cache conflicts 

 



Challenges  

 Exhaustive enumeration of all mappings is impossible as # 
of cores and # of tasks increase 

 

 Significant complexity due to inter-dependency between 
task mapping and task execution time 
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Our Approach 

 An approach based on ILP (integer linear programming) 
formulation 
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ILP problem 
Objective: minimize WCRT 

ILP solver 
Result: a task mapping  

Accurate WCRT analysis 
framework 
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Intra-task Analysis 

 Must analysis 
– Captures the memory blocks that are guaranteed in the 

cache 

 May analysis 
– Captures the memory blocks that are never in the cache 

 

 Memory block  access classification 
– Always hit 

– Always miss 

– Non-classified 



Task Mapping Modeling 

Suppose there are N tasks and M cores in the multi-core system. 𝑴𝑨𝑷𝒊𝑘 
is a 0-1 decision variable to indicate if task i is mapped to core k. Then  
for any task i  (0<i≤N).   

 𝑴𝑨𝑷𝒊𝒌
𝟎 < 𝒌 ≤ 𝑴

 =   𝟏 

𝑺𝑪𝒊𝒋 =   
𝟏      ∃ 𝟎 < 𝒌 ≤ 𝑴,𝑴𝑨𝑷𝒊𝒌 = 𝟏 𝒂𝒏𝒅 𝑴𝑨𝑷𝒋𝒌 = 𝟏

𝟎                                                                  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

For two task i and j ,  𝑺𝑪𝒊𝒋 is a 0-1 decision variable to indicate if tasks  

i and j are mapped to the same core; 𝑫𝑪𝒊𝒋  is a 0-1 decision variable to  

indicate if tasks i and j are mapped to different cores 

𝑫𝑪𝒊𝒋 = 𝟏 − 𝑺𝑪𝒊𝒋 



Shared Cache Modeling 
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WCET and WCRT Computation 

 

 WCET 
– Intra-task analysis and shared cache modeling 

 

 

 WCRT 
– WCRT is the summation of WCET value on the critical path 



Approximations in ILP 

 Interfering tasks 
– Two tasks i and j have no dependence and are mapped to 

different cores 

 

 

 WCET = Original WCET + Cache conflict penalty 
– Intra-task cache analysis  Original WCET 

– Shared cache modeling  Cache conflict penalty 

 Why approximations ? 
– Make the problem easy to solve 

 Estimate accurate WCRT with the mapping released by 
ILP formulation by a WCRT analysis framework 

 

 

𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑖𝑗 = 𝐷𝐶𝑖𝑗 



Iterative Analysis Framework  

Yun Liang, Huping Ding, Tulika Mitra,  
Abhik Roychoudhury, Yan Li,  
Vivy Suhendra 
Timing Analysis of Concurrent  
Programs Running on Shared  
Cache Multi-Cores. 
In Real-Time System Journal 2012 
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Experimental Evaluation  

 Real-world benchmark: DEBIE benchmark 

 Synthetic benchmarks: MRTC benchmark suite 

 Comparison among different approaches 
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DEBIE Benchmark Results 
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Configuration: 4-core 
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Our approach

w/o L2 cache modeling



Synthetic Benchmarks Results 
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Runtime for Synthetic Benchmarks 

Task graph  # of tasks Our approach 
(seconds) 

Optimal 
(seconds) 

1 6 6.59 3.98 

2 7 33.37 1.42 

3 8 8.77 4.93 

4 9 4.22 15.05 

5 10 17.20 67.54 

6 11 9.27 269.29 

7 12 396.33 1089.35 

8 13 480.62 3,883.00 

9 14 539.31 22,794.00 



Conclusions 

 Tasking mapping has a great impact on WCRT 

 

 An ILP formulation approach that is aware of the shared 
cache conflict 

 

 Our approach not only considers the workload balance 
but also minimizes inter-core cache conflict 

 

 Significant reduction in WCRT compared to traditional 
approach agnostic to shared cache conflicts 
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