
Shared Cache Aware Task Mapping for
WCRT Minimization

Huping Ding & Tulika Mitra

School of Computing,
National University of
Singapore

Yun Liang

Center for Energy-efficient
Computing and Applications,
School of EECS, Peking University

Multi-core Processor in Embedded
Systems

 Embedded systems adopt multi-core processors due to
performance, thermal and power constraints

 Embedded systems have real-time constraints, e.g., time
deadline of tasks

 Shared Resources, like shared cache, make the timing
difficult to estimate, e.g. Worst-Case Response Time
(WCRT) analysis

Core 1 Core 2 Core n ….

Shared Resources

Worst-Case Response Time

 Tasks can be mapped to any core in a multi-core systems

 The maximal latest finish time among all these tasks is
the Worst-Case Response Time (WCRT) of the application

 An important metric for schedulability analysis

 Our purpose is to minimize WCRT in multi-core systems
with shared cache via task mapping

A multitasking
application

t1

t2 t3

t4 t5

Previous Task Mapping Approaches

 They usually focus on balancing the workload

 They are agnostic to the shared cache behavior
– State-of-the-art works on shared cache usually fix task

mapping before shared L2 cache analysis

Motivating Example

adpcm

ndes minver

crc compress

Task graph Configuration:
2-core, private L1 cache: 256 bytes, shared L2 cache: 2KB
w/o L2 cache modeling:
Assume cache miss (hit) for each L2 access in the worst (best)
case

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W
C

R
T

(m
ill

io
n

 c
yc

le
s)

Task mappings

w/o L2 cache modeling with L2 cache modeling

It is imperative to design a shared
cache aware task mapping solution!

Our Architecture

 A private L1 cache for each core

 All cores share a L2 cache

 Tasks execute in a non-preemptive fashion

Shared L2 cache

CPU

L1 cache

Core1
CPU

L1 cache

Core 2
CPU

L1 cache

Core n

…

Main memory

Private Cache Systems

 Usually only the intra-task analysis is required to estimate
the WCET (Worst-Case Execution Time)

 No inter-core cache conflicts

Cache

Off-chip

Main Memory

CPU

Shared Cache Multi-core Systems

 Inter-core cache conflicts

– Lead to extra L2 cache misses

 This makes the timing analysis complex

m1 m2

…

…

young old

Access m2

Hit

LRU replacement policy

Shared L2 cache

Core 2 Core 1

Task T

m1 m2

…

…

young old

Access m2

Miss

LRU replacement policy

Shared L2 cache

Core 2 Core 1

Task T

m1’ m1

Access m1’

Task T’

Task Interference

 Task lifetime : [Earliest Ready, Latest Finish]

 Interfering tasks : Two tasks mapped to different cores
with lifetime overlapped

 Two tasks with dependence between them can never
interfere with each other

Time

t1

t2 t3

t4

Interfering tasks: t2 and t3, t2 and t4

Core 1 Core 2
t1

t2

t3

t4

Current Efforts on Shared Cache

 They focus on modeling cache and inter-core cache
conflicts (Yan and Zhang RTAS 2008, Hardy and Puaut
RTSS 2008 and Liang et al. RTS 2012)

 Task mapping is fixed (known) before analysis, and
agnostic to the shared cache conflicts

Impact of Task Mapping

 Task interference
– Two tasks can interfere with each other only when they are

mapped to different cores

 Workload balance among cores
– Workload balance influences the total execution time of a

multitasking application, thus impacts its WCRT

Task
interference

Inter-core
cache conflict

Execution
time of task

WCRT

Our Aims

 We target the task mapping problem in multi-core
systems with shared cache, in order to optimize the
WCRT

 We not only consider workload balance, but also
minimize inter-core cache conflicts

Challenges

 Exhaustive enumeration of all mappings is impossible as #
of cores and # of tasks increase

 Significant complexity due to inter-dependency between
task mapping and task execution time

Task
mapping

Task execution
time

Task
interference

Cache
conflict

Workload balancing

Our Approach

 An approach based on ILP (integer linear programming)
formulation

Intra-task cache

analysis

Task
mapping
modeling

WCET
computation

modeling

Shared
cache

modeling

WCRT
computation

modeling

ILP problem
Objective: minimize WCRT

ILP solver
Result: a task mapping

Accurate WCRT analysis
framework

Final
WCRT

Intra-task Analysis

 Must analysis
– Captures the memory blocks that are guaranteed in the

cache

 May analysis
– Captures the memory blocks that are never in the cache

 Memory block access classification
– Always hit

– Always miss

– Non-classified

Task Mapping Modeling

Suppose there are N tasks and M cores in the multi-core system. 𝑴𝑨𝑷𝒊𝑘
is a 0-1 decision variable to indicate if task i is mapped to core k. Then
for any task i (0<i≤N).

 𝑴𝑨𝑷𝒊𝒌
𝟎 < 𝒌 ≤ 𝑴

 = 𝟏

𝑺𝑪𝒊𝒋 =
𝟏 ∃ 𝟎 < 𝒌 ≤ 𝑴,𝑴𝑨𝑷𝒊𝒌 = 𝟏 𝒂𝒏𝒅 𝑴𝑨𝑷𝒋𝒌 = 𝟏

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

For two task i and j , 𝑺𝑪𝒊𝒋 is a 0-1 decision variable to indicate if tasks

i and j are mapped to the same core; 𝑫𝑪𝒊𝒋 is a 0-1 decision variable to

indicate if tasks i and j are mapped to different cores

𝑫𝑪𝒊𝒋 = 𝟏 − 𝑺𝑪𝒊𝒋

Shared Cache Modeling

a

b

m

c

d

a

b

m

Cache state before
considering cache conflicts

d

e

a

b

Possible cache states
after considering cache conflicts

(𝑎𝑔𝑒𝑚+ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑗
𝑠

𝑗 ∈ 𝑖𝑛𝑡𝑓(𝑖)

) ≥ 𝐴

{m, a, b, c, d, e} are mapped to the same set s in shared L2 cache.
m, a, b and c are from task i, while d and e are tasks u and v respectively

Hit

Miss

young

old

LRU replacement policy

WCET and WCRT Computation

 WCET
– Intra-task analysis and shared cache modeling

 WCRT
– WCRT is the summation of WCET value on the critical path

Approximations in ILP

 Interfering tasks
– Two tasks i and j have no dependence and are mapped to

different cores

 WCET = Original WCET + Cache conflict penalty
– Intra-task cache analysis  Original WCET

– Shared cache modeling  Cache conflict penalty

 Why approximations ?
– Make the problem easy to solve

 Estimate accurate WCRT with the mapping released by
ILP formulation by a WCRT analysis framework

𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑖𝑗 = 𝐷𝐶𝑖𝑗

Iterative Analysis Framework

Yun Liang, Huping Ding, Tulika Mitra,
Abhik Roychoudhury, Yan Li,
Vivy Suhendra
Timing Analysis of Concurrent
Programs Running on Shared
Cache Multi-Cores.
In Real-Time System Journal 2012

L1 cache
analysis

L1 cache
analysis

Filter Filter

L2 cache
analysis

L2 cache
analysis

L2 cache
Conflict
analysis

WCRT
analysis

Interference
changes?

yes no

Estimated
WCRT

Core 1 Core 2

Initial task
interference

Modified task
interference

Experimental Evaluation

 Real-world benchmark: DEBIE benchmark

 Synthetic benchmarks: MRTC benchmark suite

 Comparison among different approaches

Enumerate all
Task mappings

Evaluate WCRT with
L2 cache modeling

Select the
best mapping

ILP
formulation

Solve ILP
problem

Iterative analysis
framework

Enumerate all
Task mappings

Evaluate WCRT w/o
L2 cache modeling

Task mapping
released

Select the
best mapping

Optimal mapping Our mapping Mapping w/o L2 cache modeling

DEBIE Benchmark Results

0

200

400

600

800

1000

1200

1400

1600

1800

2000

L1:1KB L2:16KB

W
C

R
T

(m
ill

io
n

 c
yc

le
s)

Configuration: 4-core

Optimal

Our approach

w/o L2 cache modeling

Synthetic Benchmarks Results

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

Task
graph 1

Task
graph 2

Task
graph 3

Task
graph 4

Task
graph 5

Task
graph 6

Task
graph 7

Task
graph 8

Task
graph 9

R
e

la
ti

ve
 W

C
R

T

Configurations: 4-core, L1:512B, L2:4KB

Optimal Our approach w/o L2 cache modeling

Runtime for Synthetic Benchmarks

Task graph # of tasks Our approach
(seconds)

Optimal
(seconds)

1 6 6.59 3.98

2 7 33.37 1.42

3 8 8.77 4.93

4 9 4.22 15.05

5 10 17.20 67.54

6 11 9.27 269.29

7 12 396.33 1089.35

8 13 480.62 3,883.00

9 14 539.31 22,794.00

Conclusions

 Tasking mapping has a great impact on WCRT

 An ILP formulation approach that is aware of the shared
cache conflict

 Our approach not only considers the workload balance
but also minimizes inter-core cache conflict

 Significant reduction in WCRT compared to traditional
approach agnostic to shared cache conflicts

Q & A

