

Stable Backward Reachability Correction for PLL Verification with Consideration of Environmental Noise Induced Jitter

Yang Song, Haipeng Fu, Hao Yu*

School of Electrical and Electronic Engineering

Nanyang Technological University

Guoyong Shi

School of Microelectronics

Shanghai Jiao Tong University

Outline

- PLL phase deviation by jitter
- Reachability analysis
- Backward reachability correction
- Experimental results
- Summary

PLL and Noise Injected Perturbation

Induced Phase Deviation and Jitter

Reachability Analysis for PLL Verification

• Reachability analysis has been deployed to exam locking range after system settles down.

Previous Work

Challenge:

Continuization [1]:

- Responses to different inputs to CP in a cycle are calculated simultaneously
- No need of explicit simulation of state transitions

[1] M. Althoff and et.al. *ICCAD*, 2011. Saturday, February 23, 2013

• Pro

- Less calculation
- Con
 - No jitter induced phase deviation considered
 - No correction if verification failed

Reachability based PLL Jitter Verification and Correction Flow

Nonlinear Phase Noise Model by PPV

Perturbed system:

 $\dot{x} = f(x) + b(t)$

Noiseless system

Injected perturbation

Perturbed solution: $x(t) = x_{pss}(t + \alpha(t))$

Accumulated phase deviation

$$\dot{\alpha}(t) = v(t)^T (t + \alpha(t)) \cdot b(t)$$

Perturbation Projection Vector (PPV) [2]

- 1. Represent oscillator phase sensitivity under perturbation
- 2. Can be computed directly from PSS solution

PPV Calculated of Phase Deviation and Jitter

Reachability Analysis: Zonotope

Reachability Analysis: Forward Evolution of New Set

Reachability Analysis for PLL Verification with Jitter

Backward Correction

Stability Problem in Backward Correction

Calibration in Backward Correction

Experimental Results

- Implemented in Matlab
- Platform:
 - Core i5 3.2GHz processor
 - 8GB memory
- Oscillators:
 - Simple LC
 - Resistively coupled LC

Two Resistively Coupled LC Oscillators

PLL Trajectories with and without Jitter

- Target locking range $\left(\frac{\phi_v \phi_{ref}}{2\pi}\right)$ is [-0.1,0.1].
- Suppose phase deviation of 0.01*rad* per simulation step.
- Max. number of simulation cycle is set as 2000.

Forward Trajectory

- Start with initial state $v_h \in [4.82, 4.98]$
- End up with final state $(\phi_v \phi_{ref}) / 2\pi \in [-0.18, 0.21]$
- Keep corrected final state and trace back to initial state $v_h \in [4.82, 4.89]$

Backward Correction

• Final set after re-run reachability analysis:

 $(\phi_v - \phi_{ref}) / 2\pi \in [-0.07, 0.1]$

Performance

Oscillator	Iteration	Time(s)	Initial State (vh)	Final State (phase difference)
Simple LC Oscillator	1	202.99	[4.82,4.98]	[-0.18,0.21]
	2	69.98	[4.82,4.89]	[-0.07,0.10]
Coupled LC Oscillator	1	187.95	[2.90,3.10]	[-0.22,0.26]
	2	74.68	[2.90,2.96]	[-0.06,0.09]

- Phase difference is defined as $(\phi_v \phi_{ref})/2\pi$
- Aimed locking range is [-0.1,0.1].

Summary

- Introduced a system behavioral model of PLL with jitter.
- Proposed stable backward reachability correction for the verification of PLL phase locking.
- Presented a method of calibration to overcome instability of backward correction.
- Backward correction helps PLL converge to desired locking range quickly.

Thank you!

Please send comments to haoyu@ntu.edu.sg http://www.ntucmosetgp.net

