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High-level Synthesis 

• From high-level language: 

– C, C++, C#, Java 

 

• Scheduling and binding 

 

• Generate hardware 
description 
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Control-Data Flow-Graph 
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Control-Data Flow-Graph 
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Nodes represent operations, 
e.g. addition, load/store, goto 

Edges represent dependencies 
• Control-flow dependencies  
• Dataflow dependencies 

Weights represent latency 
constraints between operations 
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Scheduling in High-level Synthesis 
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Scheduling in High-level Synthesis 
• Have big impact on synthesis quality 

– Speed performance 

– Resource usage 

– Energy consumption  

• Time consuming! 
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Critical v.s. Non-critical 
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64-bit shifter 
(393 LEs) 

8-bit bitwise-and 
(8 LEs) 



Gradual Scheduling Framework 
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Gradual Scheduling Framework 
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Schedule 
Critical-Op 

Schedule 
Trivial-Op 

Aggressive yet 
time-consuming 

algorithm 

Optimize for: 
• Speed 
• Area 
Exploit parallelism 

Simple and fast 
algorithm 

Only need valid 
schedules 



Evaluation Metrics 

• Scheduling problem size reduction 

– The size of the critical part and the noncritical part 

 

• Latency reduction, exploiting global parallelism 

– In terms of number of cycles 
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BACKGROUND 
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Maximize speed 

Maximize FU sharing opportunities 

Minimize energy 
consumption 

Scheduling for the Best QoR 

ASP-DAC 2013, Pacifico Yokohama, 
Yokohama, Japan 

13 25/1/2013 

Scheduling 
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Related Work 

• Force-directed scheduling 
– Balance resource usage 

• Path-based scheduling, HCDG-based scheduling 
– Identify mutual exclusive operations for parallelism 

and FU sharing 

• Global Code Motion, Hyper-block Formation 
– Exploit global parallelism 

• SDC scheduling 
– Optimize the latency for the whole design 
– Use soft-constraints to model other design goals 
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Schedule the critical and non-critical operations 
with same effort 

 
Global Parallelism Exploiting limited by 
conditional dependencies in the CDFG 



Distribution of Scheduling Effort 

• The scheduling effort is distributed equally 

 

• But, schedule of Ops have different impact: 

– Sharing large FUs is more important than small FUs 

 

• Can we do something to make the effort 
distribution match the importance? 
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Gradual Scheduling Definition 

• Given: 

– Control-Data Flow-Graph to be scheduled 

– Criticality partitioning constraints 

• In terms of area of the functional unit 

 

• Goal: 

– Schedule the critical-operations separately from 
noncritical-operations 
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Gradual Scheduling Framework 
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Aggressive yet 
time-consuming 

algorithm 

Optimize for: 
• Speed 
• Area 
Exploit parallelism 

Simple and fast 
algorithm 

Only need valid 
results 
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Overview 
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CDFG 

Refined CDFG 

 Partial-Scheduled CDFG 

Refining 

Scheduled CDFG 

Scheduling 

Scheduling 

Overview 

• Build new CDFG that 
only contains critical-
operations 

 

• Schedule the newly 
built CDFG  

 

• Schedule non-critical 
operations 
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CDFG Refining 

• Given: 

– CDFG 

– Criticality partitioning constraints 

• In terms of area of the functional unit 

 

• Goal: 

– Build a critical-operation-only CDFG 

– Preserve the constraints between critical operations 
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CDFG Refining Requirement 

• The source of the noncritical chain should 
dominate the whole chain 
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CDFG Refining Requirement 

• The source of the noncritical chain should 
dominate the whole chain 
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Insert Pseudo 
operation 

CDFG Refining Requirement 

• The source of the noncritical chain should 
dominate the whole chain 
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PROBLEM SIZE REDUCTION 
EXPERIMENT 
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Size of Refined CDFG vs. Partitions 

• Size of Refined CDFG depends on the Partition 

 

• Show the % of critical operations for: 

– Chained: load/store, gotos; Minimal Set. 

– S16M16: Including Chained, mults and shifts 
bigger than 16 bits  

– All: Including Chained, all arithmetic, shifts and 
comparisons; Maximal Set. 
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Experimental Setup 

• LLVM-based HLS 
framework 

• Targeting Altera 
Cyclone-II FPGA 
(available on DE2-70 
board) 

• Run on CHStone 
benchmarks 
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Size of the Refined CDFG (Geomean) 
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Refined CDFG Partial-Scheduled 
CDFG 

|N| |E| |N| |E| 

Chained 12% 8% 87% 91% 

S16M16 13% 9% 86% 90% 

All 24% 16% 74% 82% 



Problem Size Reduction 
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EXPLOITING GLOBAL PARALLELISM 
BY THE GRADUAL SCHEDULING FRAMEWORK 
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Parallelism Exploiting Techniques 

• Hyper-block Formation 

– Build a bigger BB by if-conversion, may introduce 
lots of idle states 

• (Traditional) Global Code Motion 

– Move the operations across BBs, but still restrict 
them inside a BB 

• This work: No need to restrict non-critical 
operations inside a BB 
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“Implicit” Global Code Motion 
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Implicit Global Code Motion 

• Execute in parallel with 
other BB 

– Not necessarily restricted 
in a specific BB 
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Implicit Global Code Motion 

• Execute in parallel with 
other BB 

• No need to duplicate the 
operations into BBs in 
each path 

– Confuse FU binding 

– Too many paths 
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Implicit Global Code Motion 

• Execute in parallel with 
other BB 

• No need to duplicate the 
operations into BBs in 
each path 

• Completely integrated 
with scheduling 
algorithm 

25/1/2013 
ASP-DAC 2013, Pacifico Yokohama, 

Yokohama, Japan 
37 

F 

A 

B 

D 

BB 

BB 



Implicit Global Code Motion 
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Why wait states? 

• All cross BB chains are scheduled according to 
the longest-path in the CDFG 

– Without knowing the deps between BBs are 
conditional 
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Why wait states? 

• But a shorter path maybe taken 

• The latency of cross BB chains are NOT preserved 

– 4 + 2 + 3 <= 5 
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Why wait states? 

• But a shorter path maybe taken 

• The latency of cross BB chains are NOT preserved 

– 4 + 2 + 3 <= 5 + [wait states] 
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Wait States Insertion 

• Fix the cross BB constraints 

 

• Based on Shortest Path Distance 

– #States = Expected SPD - Actual SPD 

 

• Wait states are inserted as late as possible 
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Experimental Setup - Reminder 

• Evaluate the latency 
reduction by Implicit 
Global Code Motion 
(IGCM) 

• Run on CHStone 
benchmarks 
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Latency Reduction by IGCM 
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Latency Reduction by IGCM 
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Latency Reduction by IGCM 
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Latency Reduction by IGCM 
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Summary 

• Gradual scheduling framework 
– Schedule the critical/noncritical operations 

separately 

• Reduced the problem size of scheduling 
– Size reduced to 24% of Nodes and 16% of Edges 

– Corresponds to 96.8% reduction in SDC scheduling 

• Exploited cross-BB parallelism 
– Reduced run-time up to 37.7% and 15.5% on 

average 
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