
A Gradual Scheduling Framework for
Problem Size Reduction and

Cross Basic Block Parallelism Exploitation
in High-level Synthesis

Hongbin Zheng

Q. Liu, J. Li, D. Chen, Z. Wang

School of Physics and Engineering

Sun Yat-sen University, P. R. China

High-level Synthesis

• From high-level language:

– C, C++, C#, Java

• Scheduling and binding

• Generate hardware
description

HLL

Scheduling

Hardware
Description

2

Binding

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan

Control-Data Flow-Graph

Scheduling

3

Binding

A

C E

F

B

D

5
5

2 2

3 8

HLL

Hardware
Description

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan

Control-Data Flow-Graph

A

C E

F

B

D

5
5

2 2

3 8

Nodes represent operations,
e.g. addition, load/store, goto

Edges represent dependencies
• Control-flow dependencies
• Dataflow dependencies

Weights represent latency
constraints between operations

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

4 25/1/2013

Scheduling in High-level Synthesis

A

C E

F

B

D

A

C

F E

B

E

Scheduling

C-step 1

C-step 2

C-step 3

C-step 4

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

5 25/1/2013

Scheduling in High-level Synthesis
• Have big impact on synthesis quality

– Speed performance

– Resource usage

– Energy consumption

• Time consuming!

Scheduling

6

Binding

HLL

Hardware
Description

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan

Critical v.s. Non-critical

A

C

F

E

B

E

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

7 25/1/2013

64-bit shifter
(393 LEs)

8-bit bitwise-and
(8 LEs)

Gradual Scheduling Framework

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
8

Schedule
Critical-Op

Schedule
Trivial-Op

Scheduling

Binding

HLL

Hardware
Description

Gradual Scheduling Framework

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
9

Schedule
Critical-Op

Schedule
Trivial-Op

Aggressive yet
time-consuming

algorithm

Optimize for:
• Speed
• Area
Exploit parallelism

Gradual Scheduling Framework

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
10

Schedule
Critical-Op

Schedule
Trivial-Op

Aggressive yet
time-consuming

algorithm

Optimize for:
• Speed
• Area
Exploit parallelism

Simple and fast
algorithm

Only need valid
schedules

Evaluation Metrics

• Scheduling problem size reduction

– The size of the critical part and the noncritical part

• Latency reduction, exploiting global parallelism

– In terms of number of cycles

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
11

BACKGROUND

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
12

Maximize speed

Maximize FU sharing opportunities

Minimize energy
consumption

Scheduling for the Best QoR

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

13 25/1/2013

Scheduling

CDFG

N Iteration

Related Work

• Force-directed scheduling
– Balance resource usage

• Path-based scheduling, HCDG-based scheduling
– Identify mutual exclusive operations for parallelism

and FU sharing

• Global Code Motion, Hyper-block Formation
– Exploit global parallelism

• SDC scheduling
– Optimize the latency for the whole design
– Use soft-constraints to model other design goals

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

14 25/1/2013

Related Work

• Force-directed scheduling
– Balance resource usage

• Path-based scheduling, HCDG-based scheduling
– Identify mutual exclusive operations for parallelism

and FU sharing

• Global Code Motion, Hyper-block Formation
– Exploit global parallelism

• SDC scheduling
– Optimize the latency for the whole design
– Use soft-constraints to model other design goals

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

15 25/1/2013

Schedule the critical and non-critical operations
with same effort

Global Parallelism Exploiting limited by
conditional dependencies in the CDFG

Distribution of Scheduling Effort

• The scheduling effort is distributed equally

• But, schedule of Ops have different impact:

– Sharing large FUs is more important than small FUs

• Can we do something to make the effort
distribution match the importance?

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
16

Gradual Scheduling Definition

• Given:

– Control-Data Flow-Graph to be scheduled

– Criticality partitioning constraints

• In terms of area of the functional unit

• Goal:

– Schedule the critical-operations separately from
noncritical-operations

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
17

Gradual Scheduling Framework

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
18

Aggressive yet
time-consuming

algorithm

Optimize for:
• Speed
• Area
Exploit parallelism

Simple and fast
algorithm

Only need valid
results

Schedule
Critical-Op

Schedule
Trivial-Op

CDFG

Overview

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
19

Refine

Schedule-Critical

Schedule-Trivial

CDFG

Refined CDFG

 Partial-Scheduled CDFG

Refining

Scheduled CDFG

Scheduling

Scheduling

CDFG

Refined CDFG

 Partial-Scheduled CDFG

Refining

Scheduled CDFG

Scheduling

Scheduling

Overview

• Build new CDFG that
only contains critical-
operations

• Schedule the newly
built CDFG

• Schedule non-critical
operations

25/1/2013

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

20

CDFG Refining

• Given:

– CDFG

– Criticality partitioning constraints

• In terms of area of the functional unit

• Goal:

– Build a critical-operation-only CDFG

– Preserve the constraints between critical operations

25/1/2013

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

21

1

3 5

6

B

D

CDFG Refining Example

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
22

A

C E

F

B

D

5

5

2 2

3
8

A

B E

F

5

10

7

8
2

Refine

A

C E

F

5 + 2 + 3

CDFG Refining Example

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
23

A

C E

F

B

D

2

3 2

5

Longest-path
distance

CDFG Refining Requirement

• The source of the noncritical chain should
dominate the whole chain

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
24

A

D

C

B

Dominator Tree rooted A

CDFG Refining Requirement

• The source of the noncritical chain should
dominate the whole chain

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
25

A

D

C

B

Illegal Chain

Not dominated by A

Insert Pseudo
operation

CDFG Refining Requirement

• The source of the noncritical chain should
dominate the whole chain

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
26

A

D

C

B

Illegal Chain

A

D

C

B

Legal Chain

P

PROBLEM SIZE REDUCTION
EXPERIMENT

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
27

Size of Refined CDFG vs. Partitions

• Size of Refined CDFG depends on the Partition

• Show the % of critical operations for:

– Chained: load/store, gotos; Minimal Set.

– S16M16: Including Chained, mults and shifts
bigger than 16 bits

– All: Including Chained, all arithmetic, shifts and
comparisons; Maximal Set.

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
28

Experimental Setup

• LLVM-based HLS
framework

• Targeting Altera
Cyclone-II FPGA
(available on DE2-70
board)

• Run on CHStone
benchmarks

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
29

Bit-level
optimization

CDFG

Gradual
Scheduling

Size of the Refined CDFG (Geomean)

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
30

Refined CDFG Partial-Scheduled
CDFG

|N| |E| |N| |E|

Chained 12% 8% 87% 91%

S16M16 13% 9% 86% 90%

All 24% 16% 74% 82%

Problem Size Reduction

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
31

Schedule
Critical-Op

CDFG

Schedule
Trivial-Op

SDC

ALAP

Polynomial Time
of (24% × 16%)

O(74% + 82%)

EXPLOITING GLOBAL PARALLELISM
BY THE GRADUAL SCHEDULING FRAMEWORK

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
32

Parallelism Exploiting Techniques

• Hyper-block Formation

– Build a bigger BB by if-conversion, may introduce
lots of idle states

• (Traditional) Global Code Motion

– Move the operations across BBs, but still restrict
them inside a BB

• This work: No need to restrict non-critical
operations inside a BB

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
33

“Implicit” Global Code Motion

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
34

Other
BBs

F

A

B

D

BB1

BB2

Other
BBs

F

A

B

D

BB1

BB2

Laten
cy

Laten
cy

Implicit Global Code Motion

• Execute in parallel with
other BB

– Not necessarily restricted
in a specific BB

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
35

F

A

B

D

BB

BB

F

A

B

D

BB

BB

Implicit Global Code Motion

• Execute in parallel with
other BB

• No need to duplicate the
operations into BBs in
each path

– Confuse FU binding

– Too many paths

25/1/2013

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

36

Implicit Global Code Motion

• Execute in parallel with
other BB

• No need to duplicate the
operations into BBs in
each path

• Completely integrated
with scheduling
algorithm

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
37

F

A

B

D

BB

BB

Implicit Global Code Motion

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
38

CDFG

Refined CDFG

Refining

Scheduling
(with Implicit Global

Code Motion)

Control-Deps Relaxing

Wait States Insertion

Schedule
Critical-Op

Schedule
Trivial-Op

CDFG

Why wait states?

• All cross BB chains are scheduled according to
the longest-path in the CDFG

– Without knowing the deps between BBs are
conditional

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
39

BB1
BB3 (10)

BB2 (5)
BB4

Interval = 10

Time

B A
2 3

4

Why wait states?

• But a shorter path maybe taken

• The latency of cross BB chains are NOT preserved

– 4 + 2 + 3 <= 5

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
40

BB1
BB3 (10)

BB2 (5)
BB4

Time

Interval = 5

B A
2 3

4

Why wait states?

• But a shorter path maybe taken

• The latency of cross BB chains are NOT preserved

– 4 + 2 + 3 <= 5 + [wait states]

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
41

BB1
BB3 (10)

BB2 (5)
BB4

Time

Interval = 5

B A
2 3

4 Wait

Wait States Insertion

• Fix the cross BB constraints

• Based on Shortest Path Distance

– #States = Expected SPD - Actual SPD

• Wait states are inserted as late as possible

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
42

Experimental Setup - Reminder

• Evaluate the latency
reduction by Implicit
Global Code Motion
(IGCM)

• Run on CHStone
benchmarks

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
43

Bit-level
optimization

CDFG

Gradual
Scheduling

Latency Reduction by IGCM

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
44

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

La
te

n
cy

 n
o

rm
al

iz
e

d
 t

o

d
ef

au
lt

 f
lo

w

IGCM Baseline

Latency Reduction by IGCM

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

45 25/1/2013

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

La
te

n
cy

 n
o

rm
al

iz
e

d
 t

o

d
ef

au
lt

 f
lo

w

IGCM C-Op Others

Latency Reduction by IGCM

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

46 25/1/2013

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

La
te

n
cy

 n
o

rm
al

iz
e

d
 t

o

d
ef

au
lt

 f
lo

w

IGCM C-Op Others

Latency Reduction by IGCM

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

47 25/1/2013

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

La
te

n
cy

 n
o

rm
al

iz
e

d
 t

o

d
ef

au
lt

 f
lo

w

IGCM C-Op Others

Summary

• Gradual scheduling framework
– Schedule the critical/noncritical operations

separately

• Reduced the problem size of scheduling
– Size reduced to 24% of Nodes and 16% of Edges

– Corresponds to 96.8% reduction in SDC scheduling

• Exploited cross-BB parallelism
– Reduced run-time up to 37.7% and 15.5% on

average

ASP-DAC 2013, Pacifico Yokohama,
Yokohama, Japan

48 25/1/2013

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
49

Thanks and Acknowledgement

• Thanks for the EDA group in SYSU for
participating the project:

– Q. Liu, J. Li, D. Chen, Z. Wang

• Thanks for helpful discussions with colleagues
at ADSC:

– K. Rupnow, S. Gurumani, T. Satria

• Thanks for listening!

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
50

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
51

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1

R
u

n
 T

im
e

(s
)

Normalized CDFG Size

Chained S16M16 All

Refining Time Less Than 0.05s!

25/1/2013
ASP-DAC 2013, Pacifico Yokohama,

Yokohama, Japan
52

