
Implementing Microprocessors
from Simplified Descriptions

Nikhil A. Patil, Derek Chiou

The University of Texas at Austin

Asia South Pacific Design Automation Conference
January 2013

Implementing Microprocessors from Simplified Descriptions 1 / 30

Problem Simplify processor hardware description

Simplify description of processor hardware

Processors are becoming more and more complex
Most complexity is added on purpose
Better performance and power efficiency

Make processor hardware description simpler
without reducing the ability to specify inherent complexity

Implementing Microprocessors from Simplified Descriptions 2 / 30

Problem Simplify processor hardware description

What does simplify mean?

simplify: to make simple; reduce to basic essentials

fig/breadboard-messy fig/breadboard-clean

Implementing Microprocessors from Simplified Descriptions 3 / 30

Problem Simplify processor hardware description

What does simplify mean?

simplify: to make simple; reduce to basic essentials

fig/breadboard-messy fig/breadboard-clean

Implementing Microprocessors from Simplified Descriptions 3 / 30

Problem Simplify processor hardware description

What does simplify mean?

simplify: to make simple; reduce to basic essentials

wire [96:0] rec;
wire [15:0] val;

assign val = rec[96] ? rec[95:80]
: rec[79:64];

typedef struct packed {
bit align;
bit [15:0] x;
bit [15:0] y;
bit [63:0] theta;

} rec_t;

rec_t rec;
wire [15:0] val;

assign val = rec.align ? rec.x
: rec.y;

structure of rec is entangled
in the description

Implementing Microprocessors from Simplified Descriptions 4 / 30

Problem Simplify processor hardware description

What does simplify mean?

simplify: to make simple; reduce to basic essentials

wire [96:0] rec;
wire [15:0] val;

assign val = rec[96] ? rec[95:80]
: rec[79:64];

typedef struct packed {
bit align;
bit [15:0] x;
bit [15:0] y;
bit [63:0] theta;

} rec_t;

rec_t rec;
wire [15:0] val;

assign val = rec.align ? rec.x
: rec.y;

Compiler generates packing
Simpler to read/debug
Easy to add new fields
Avoid bugs accessing fields

Implementing Microprocessors from Simplified Descriptions 4 / 30

Problem Disentangling Functionality

Problem: disentangling functionality

Processor design clearly separates correctness and performance
Instruction set: correctness
Microarchitecture: power, performance

But processor implementation intimately entangles them

Make processor hardware description simpler
without reducing the ability to specify inherent complexity

by disentangling functionality from the description

Implementing Microprocessors from Simplified Descriptions 5 / 30

Problem Disentangling Functionality

Impact of disentangling functionality

Compiler generates ISA-dependent logic:
I Microcode table (control store)
I Structure & encoding of control words
I Logic controlled by microcode control bits

Description becomes simpler to write, read and modify
Avoid instruction implementation bugs
Easy to add new instructions

Implementing Microprocessors from Simplified Descriptions 6 / 30

Programming Model Toolflow

Toolflow
Bluespec

Bluespec
SystemVerilog

(BSV)

Bluespec
synthesis
toolflow

Implementing Microprocessors from Simplified Descriptions 7 / 30

Programming Model Toolflow

Toolflow
Two descriptions

BSV Template Instruction Set
◦◦◦◦◦◦◦◦◦◦

Implementing Microprocessors from Simplified Descriptions 7 / 30

Programming Model Toolflow

Toolflow
Holes

BSV Template Instruction Set

Compiler

◦◦◦◦◦◦◦◦◦◦

••••••••••

Implementing Microprocessors from Simplified Descriptions 7 / 30

Programming Model Toolflow

Toolflow
Flow

BSV Template

Flow

Instruction Set

Compiler

◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦

••••••••••

Implementing Microprocessors from Simplified Descriptions 7 / 30

Programming Model Instruction Set

Architectural State

µL language
sequential
static types
type inference
bit-width inference
extensible structs

RegID ← defenum [EAX, ECX, EDX, . . .]

State ← defstruct
[(Bit 32 , PC)
, (Array RegID (Bit 32) , RF)
, (Array Addr (Bit 8) , MEM)
, (CCode , CC)
, (Bool , HLT)
]

Implementing Microprocessors from Simplified Descriptions 8 / 30

Programming Model Instruction Set

Instruction Set

µL language
sequential
static types
type inference
bit-width inference
extensible structs

def NOP(inst):
pc ← select (PC)
update (PC, pc + 1)

def JMP(inst):
pc ← select (PC)
update (PC, pc + signExt(inst.IMM))

def POP(inst):
pc ← select (PC)
update (PC, pc + 2)
sp ← read (RF, ESP)
x ← read4 (MEM, sp)
write (RF, ESP, sp + 4)
write (RF, inst.DEST, x)

Implementing Microprocessors from Simplified Descriptions 9 / 30

Programming Model Instruction Set

Instruction Set

It is easy to describe “functionality” without reference to “timing”

Instruction Set

Limitation: we cannot directly specify
memory model
non-deterministic instructions

Implementing Microprocessors from Simplified Descriptions 10 / 30

Programming Model Microarchitectural Template

Microarchitectural Template: holes

It is difficult to describe microarchitecture without reference to ISA

BSV Template

◦◦◦◦◦◦◦◦◦◦

Details of the ISA manifest “all over the place”
User can use holes to skip such details by using holes in BSV
Compiler tries to fill in holes using ISA information

. A. Solar-Lezama et al, PLDI 2005
Programming by Sketching for Bitstreaming Programs

Implementing Microprocessors from Simplified Descriptions 11 / 30

Programming Model Microarchitectural Template

Holes: used in teaching

University of Texas at Austin
EE 460N: Undergraduate Computer Architecture
Simulate a 5-stage pipeline for LC3b ISA
Given a detailed document describing microarchitecture
Students fill in empty LOGIC boxes

Implementing Microprocessors from Simplified Descriptions 12 / 30

Programming Model Microarchitectural Template

LC3b pipeline: memory stage

LOGIC
BR

TRAP.OP

UNCON.OP

BR.OP

LOGIC

M
E

M
.C

S[
L

D
.C

C
]

M
E

M
.C

S[
L

D
.R

E
G

]

M
E

M
.V

M
E

M
.C

S[
B

R
.S

T
A

L
L

]

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
	 	 	 	
	 	 	 	

� � �
� � �
� � �

� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

4

D−CACHE

WE
LOGIC

WE1 WE0

DCACHE.R/W

DATA.SIZE

LOGIC

MEM.STALL
TRAP.PCTARGET.PC

MEM.CC

MEM.DRID

MEM.PCMUX

LOGIC

3

16

16

3 2

16

3MEM.DRID

MEM.IR

MEM.ALU.RESULT

MEM.ADDRESS

CSMEM.

MEM.NPC

CCMEM.

ALU.RESULTMEM.

IRMEM.

MEM.V

DRID

SR.ADDRESS

SR.DATA

SR.CS

SR.NPC

SR.ALU.RESULT

SR.IR

SR.DRIDMEM.

16

DCACHE.R

16

16

16

V.MEM.BR.STALL

V.MEM.LD.REG

V.MEM.LD.CC

16

MEM STAGE

MEM.NPC

MEM.CS[10:7]

IR[11:9]

MEM.V

16

SR.V

Fig. 5 Memory Stage (MEM−Stage)

R

EN

INPUTS

LOGIC
MEM.ADDRESS[0]

M
E

M
.A

D
D

R
E

SS
[0

]

16

DATA

DATA.SIZE

ADDR

D
A

T
A

.S
IZ

E

DCACHE.EN
MEM.V

V.DCACHE.EN

M
E

M
.A

D
D

R
E

SS
[0

]

16

MEM.ALU.RESULT

Implementing Microprocessors from Simplified Descriptions 13 / 30

Programming Model Microarchitectural Template

LOGIC
BR

TRAP.OP

UNCON.OP

BR.OP

LOGIC

M
E

M
.C

S[
L

D
.C

C
]

M
E

M
.C

S[
L

D
.R

E
G

]

M
E

M
.V

M
E

M
.C

S[
B

R
.S

T
A

L
L

]

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

	 	 	 	
	 	 	 	

� � �
� � �
� � �

� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

4

D−CACHE

WE
LOGIC

WE1 WE0

DCACHE.R/W

DATA.SIZE

LOGIC

MEM.STALL
TRAP.PCTARGET.PC

MEM.CC

MEM.DRID

MEM.PCMUX

LOGIC

3

16

16

3 2

16

3MEM.DRID

MEM.IR

MEM.ALU.RESULT

MEM.ADDRESS

CSMEM.

MEM.NPC

CCMEM.

ALU.RESULTMEM.

IRMEM.

MEM.V

DRID

SR.ADDRESS

SR.DATA

SR.CS

SR.NPC

SR.ALU.RESULT

SR.IR

SR.DRIDMEM.

16

DCACHE.R

16

16

16

V.MEM.BR.STALL

V.MEM.LD.REG

V.MEM.LD.CC

16

MEM STAGE

MEM.NPC

MEM.CS[10:7]

IR[11:9]

MEM.V

16

SR.V

Fig. 5 Memory Stage (MEM−Stage)

R

EN

INPUTS

LOGIC
MEM.ADDRESS[0]

M
E

M
.A

D
D

R
E

SS
[0

]

16

DATA

DATA.SIZE

ADDR

D
A

T
A

.S
IZ

E

DCACHE.EN
MEM.V

V.DCACHE.EN

M
E

M
.A

D
D

R
E

SS
[0

]

16

MEM.ALU.RESULT

Implementing Microprocessors from Simplified Descriptions 14 / 30

Programming Model Microarchitectural Template

How big are the holes?

carefree user

make the entire processor a single hole
insert pipeline registers leaving each stage as a hole
refine the fetch stage to use an instruction-cache
· · ·
describe detailed hardware with several small holes all over

power user → many, small, combinational holes

Implementing Microprocessors from Simplified Descriptions 15 / 30

Programming Model Microarchitectural Template

Holes in BSV

Manually specified as a pure function: #hole(· · ·)
Explicit inputs, but not necessarily minimal
Automatically defined using ISA information
Synthesized to combinational logic

Example
dcache.request(#ldst p(uop), . load/store

phyAddr(#addr(uop)), . address
#st data(uop)); . store-data

Implementing Microprocessors from Simplified Descriptions 16 / 30

Programming Model Compiler Correctness

Compiler correctness

BSV Template Instruction Set

implements

••••••••••

Filled-in BSV is a valid microarchitecture for this ISA
Makes hole synthesis at least as “hard” as verification
Too strong a notion for correctness
How can we weaken this?

Implementing Microprocessors from Simplified Descriptions 17 / 30

Programming Model Flow

Flow: an intermediate spec

BSV Template Flow Instruction Set

◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦

Flow describes the functional execution of a single instruction
through the microarchitecture template

Implementing Microprocessors from Simplified Descriptions 18 / 30

Programming Model Flow

Flow: example

µL language
sequential
static types
type inference
bit-width inference
extensible structs

while (true):
pc ← select (PC)
inst0 ← fetch (pc)
update (PC, pc + #ilen(inst0))
x ← read (RF, #src(inst0))
inst1 ← inst0 +: (DATA, x)
z ← #add x(inst1) + #add y(inst1)
inst2 ← inst1 +: (RESULT, z)
pupdate (PC, #jmp(inst2), #target(inst2))
pwrite (RF, #wr en(inst2), #dest(inst0), z)

Implementing Microprocessors from Simplified Descriptions 19 / 30

Programming Model Flow

Flow: divide problem into two

BSV Template Flow

implements

◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦

User
BSV template

must “implement”
flow for every
type-correct
hole definition

Compiler
Flow must be

equivalent to ISA
for the generated
hole definition

Flow ISA

is equivalent to

••••••••••

Implementing Microprocessors from Simplified Descriptions 20 / 30

Programming Model Flow

Flow restricts holes

Holes are general enough to disentangle the instruction set

But, a hole cannot contain
intrinsically time-dependent logic
pipeline control logic
cache control logic
inter-instruction dependency logic

Implementing Microprocessors from Simplified Descriptions 21 / 30

Compiler Overview

Compiler overview

Flow ISA

is equivalent to

••••••••••

Generate hole definitions such that flow is equivalent to ISA
Equivalence determined by a term rewriting system R

Implementing Microprocessors from Simplified Descriptions 22 / 30

Compiler Problem formulation

Compiler problem formulation

Flow (µL) ISA (µL)

loop body loop body

flow :: Σ → Σ
symbolic term

isa :: Σ → Σ
symbolic term

◦◦◦◦◦◦◦◦◦◦

◦
◦
◦◦◦

◦
◦
◦
◦
◦ ◦

◦
◦◦◦

◦
◦
◦
◦
◦

∃θ. ∀Σ. θ(flow (Σ)) =? isa (Σ)

Second-order R-matching

Implementing Microprocessors from Simplified Descriptions 23 / 30

Compiler Problem formulation

R-matching & Lazy Narrowing

flow isa

=?
◦
◦
◦◦◦

◦
◦
◦
◦
◦ ◦

◦
◦◦◦

◦
◦
◦
◦
◦

Problem formulated as second-order R-matching
Narrowing is a systematic way to solve such problems
Lazy narrowing is a refinement that works outside-in
Heuristic-guided systematic search, backtracking as necessary

. Christian Prehofer, Solving Higher-Order Equations, 1995

Implementing Microprocessors from Simplified Descriptions 24 / 30

Compiler Practical concerns

Practical concerns

Solver can be very slow and timeout
Need limits on hole size
Equation solver errors are cryptic

Implementing Microprocessors from Simplified Descriptions 25 / 30

Evaluation

Evaluation target

Y86-inorder
CMU, Introduction to Computer Systems
27 instructions (including variants)
5-stage inorder pipeline

Implementing Microprocessors from Simplified Descriptions 26 / 30

Evaluation Y86 inorder pipeline

Y86-inorder: Compile times

Compiler stage Time Instruction Time

Typecheck 0.2 s RRMOV 0.42 s
Normalize 1.5 s RMMOV 0.33 s
Solver 4.9 s −→ MRMOV 0.31 s
Microcode 0.1 s ADD 0.32 s

JXX 0.16 s
Total 6.7 s PUSH 0.29 s

POP 0.39 s
CALL 0.24 s
RET 0.43 s

LEAVE 0.35 s
. . .

Implementing Microprocessors from Simplified Descriptions 27 / 30

Evaluation Y86 inorder pipeline

Y86-inorder: Lines of code

Vanilla BSV flow Full processor 3300 lines BSV
Core pipeline 450 lines BSV

Input to compiler
Core pipeline 400 lines BSV
ISA 180 lines µL
Flow 63 lines µL

Output of compiler
Microcode 20 lines BSV

510 bits

Functions 300 lines BSV
730 gates

Implementing Microprocessors from Simplified Descriptions 28 / 30

Summary

Summary

BSV Template

Flow

Instruction Set

Compiler

◦◦◦◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦

••••••••••

Implementing Microprocessors from Simplified Descriptions 29 / 30

Questions Ask me anything!

Thank you!

Implementing Microprocessors from Simplified Descriptions 30 / 30

	Problem
	Programming Model
	Toolflow
	Instruction Set
	Microarchitectural Template
	Flow

	Compiler
	Overview
	Problem formulation
	Practical concerns

	Evaluation
	Y86 inorder pipeline

	Summary

