A High-Speed and Low-Complexity Lens Distortion Correction Processor for Wide-Angle Cameras

<u>Won-Tae Kim</u>, Hui-Sung Jeong, Gwang-Ho Lee, Tae-Hwan Kim

Korea Aerospace Univ., Republic of Korea

Background

Image sensing systems with a wide-angle camera

Barrel distortion

Distorted image

- Lens Distortion Correction (LDC) processor is required for the image sensing systems.
- High correction speed for the real-time operation
- Low-complexity implementation for the miniaturized low-cost systems

LDC Process

- Backward-mapping-based LDC process
- Step 1 : Backward mapping
- Step 2 : Interpolation

Proposed LDC Processor

Low-complexity backward mapping

Proposed LDC Processor

 Read operations for the bilinear interpolation have the spatial locality.

Results

Implementation results

	This work	[1]	[2]
CMOS technology (μ m)	0.11	0.18	0.18
Equivalent gate count ¹⁾	17223	44992	13917
Correction speed (Mpixels/s)	205	140	40
Max. frequency (MHz)	370	200	200
DIS memory size (byte) ²⁾	4M	4 x 4M	4M
Maximum supported frame size	2048 x 2048	1024 x 1024	1024 x 1024
Power consumption (mW) ³⁾	9.77	27.86	12.68
FOM (Kpixels/s) ⁴⁾	11.9	3.1	2.8

1) The smallest 2 input NAND cell is counted as one.

2) 8-bit gray scale, Frame size : 2048 x 2048

3) External memory power (0.11 μm tech. process, single-port synchronous memory, time units : 1 ns)

4) Figure of Merit (FOM) : Correction speed(Mpixels/s)/Equivalent gate count(K)

Chip layout and demonstration result

[1] P. Y. Chen, C. C. Huang, Y. H. Shiau, and Y. T. Chen, "A VLSI implementation of barrel distortion correction for wide-angle camera images," *IEEE Trans. Circuits Syst. II Express Briefs.*, vol. 56, no. 1, pp. 51-55, Jan. 2009.

[2] S. Chen, H. Huang, and C. Luo, "Time multiplexed VLSI architecture for real-time barrel distortion correction in video-endoscopic images," *IEEE Trans. Circuits and Systems for Video Tech.*, Vol. 21, no. 11, pp. 1612-1621, Nov. 2011.

