Lithographic Defect Aware Placement Using Compact Standard Cells Without Inter-cell Margin

Seongbo Shim, Yoojong Lee, and Youngsoo Shin

Department of Electrical Engineering, KAIST Deajeon, Korea

Contents

- Introduction
- Motivation and problems
- Defect probability
- Fast computation of defect probability
- Defect probability-aware placement
- Experiment and result
- Summary

Introduction

Inter-cell defect

• May occur at cell boundary, if no action is taken

Inter-cell margin

- Extra space at cell boundary with dummy poly
- Causes area overhead

Motivation

What happen if no inter-cell margin at all?

Histogram of defect probability of all possible cell pairs in 28-nm tech. library

Motivation

Placement using compact cells without inter-cell margins

- Area saving: ~10%, but cause high defect probability
- Key problem: automatic placement while defect probability is taken care

Standard placement using **compact cells**

New placement using compact cells

Lithography Simulation

Process variation band (PVB)

- Made of multiple image contours (@ 27 extreme lithography settings)
- PVB thickness: sensitivity to lithography variations
- PVB distance (PD): criterion of bridging failure (short)

Defect Probability

- D(i, j): defect probability between cells i and j
- PD(i, j): minimum PD along cell boundary
- Maximum value between D(i, j) of contact and metal 1 layer

Challenge

- One lithography simulation: 0.05 sec
- Lithography simulations for **one cell pair**
 - : 27(litho. settings) x 2(contact, metal 1) x 0.05 = 2.5 sec
- Total simulation time for 1000 cells
 - : $(2x1000)^2 \times 2.5 \text{ sec} = 100 \text{ days}$

Technique 1: reduce simulation range

Technique 2: identify patterns along cell boundary and group them Grouping Cell boundary

Technique 2 (continue)

: Move on to discover extent pairs that exist in actual cell pairs

Technique 3: group similar extents

- Reduce # extent groups
- D(i, j) error increases

Result of Fast Calculation

Defect Probability-Aware Placement

Placement using compact cells without inter-cell margins

• Key problem: automatic placement while average defect probability and total wirelength are minimized

Histogram of defect probability of all compact cell pairs

New placement

using compact cells

Implementation of Placement

- 1. Initialization
- 2. Pre-placement
 - Find values of coefficients in cost function

3. SA-based placement

- New placement and cost evaluation
- Acceptance check
- 4. Whitespace injection

Implementation of Placement

Operations to generate a new placement

Displacement

Swap

Whitespace injection

- After simulated annealing
- For defect prob. > threshold

Experiment 1

Assessment of placement

Assessment of PVB thickness

Experiment 3

Amount of whitespace vs defect probability

- More whitespace, easier placement (to decrease defect probability)
- Minimum requirement of whitespace: 15% (max. defect prob. < 5%)

Experiment 4

Defect probability-aware logic synthesis

- Exclude bad cells in logic synthesis
- Bad cell: mean[D(bad cell, *)] > 50%

Good

Bad

25

20

Summary

- 1. Inter-cell margin is not always necessary
 - Its need is determined by adjacent cell
 - If margin is completely removed, it may be probabilistically okay
- 2. Defect probability of all cell pairs can be computed very fast
- 3. Margin-less design has been tried
 - Area saving: 11%
 - Negative effect (lithographic defect) has been taken care of during placement