

CNPUF: A Carbon Nanotube-based Physically Unclonable Function for Secure Low-Energy Hardware Design

S. T. Choden Konigsmark, Leslie K. Hwang, Deming Chen, Martin D. F. Wong

University of Illinois at Urbana-Champaign

January 21, 2014

Outline

- Introduction
- Background
- Carbon Nanotube PUF (CNPUF)
- Extended CNPUF (ex-CNPUF)
- Experimental Evaluation
- Conclusion

I

Introduction

- New devices and technologies: New Risks
 - Wireless sensor networks / military, crisis detection
 - Wearable technology / privacy
 - Medical electronics / health

4

Introduction (2)

- Security cannot be handled by software alone
 - Encryption, protocols, etc. assume secure hardware elements
 - Attacks against hardware possible, e.g. imaging, probing, reading memory
- Silicon Physically Unclonable Functions (PUFs) by Gassend et al. as a main building block of hardware security
 - Unique and unpredictable challenge (input) to response (output) mapping based on manufacturing process variations

Source: G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device authentication and secret key generation. *44th DAC 2007.*

Introduction (4)

- PUF Applications
 - Device identification
 - Device authentication
 - Random Number Generator
 - Secret Key Generator
 - Hardware Trojan Detection
- Properties
 - Volatile: Tampering results in wrong behavior
 - Reliability: Measured in Intra-Chip Hamming Distance
 - Uniqueness: Measured in Inter-Chip Hamming Distance
- Various Silicon PUFs exist:
 - Delay, Frequency, Current, Subthreshold, ...
 - Explore emerging technologies for new variation sources

Background

- Carbon Nanotubes (CNTs) promising candidate for future electronics
 - Desirable properties (strong, high conductivity, ...)
- CNTs are technology of the future, but very fast paced development
 - First computer (1kHz) consisting of CNTs exclusively

Carbon nanotube computer, Shulaker et al., Nature 2013

Background (2)

- Can be thought of as a rolled Graphene sheet
 - Chirality of the CNT describes the way it is rolled
 - Determines band gap and type as metallic CNT (m-CNT) or semiconducting CNT (s-CNT)

Background (3)

- CNT Field Effect Transistors (CNFETs) are very difficult to control
 - Chirality, Diameter
 - Growth / Density
 - Alignment
 - Doping concentration
- Naturally 1/3 of CNTs are metallic
 - Improved processes available, but cannot achieve 100% s-CNT required for digital logic applications

Background (4)

- Metallic CNTs can lead to undesired effects
 - Drain-to-Source shorting
 - Low Ion/Ioff ratio
- Metallic CNT removal can also be complicated
 - Residue of metallic CNTs
 - Damaged semiconducting CNTs
 - There is a possibility that not all of the m-CNTS are removed

Carbon Nanotube PUF

- Observation in CNFET:
 - m-CNTs dominate off-behavior
 - m-CNTs and s-CNTS determine on-behavior together
 - Number of s-CNTs significantly larger than m-CNTs
- Constellation of m-CNTs and s-CNTs as dominant source of static variation

m-CNT burning not required

• Current as metric to take advantage of all the different process variations

Carbon Nanotube PUF (2)

- Exploit unique CNT characteristic to achieve simple and efficient design
 - Problematic m-CNTs provide main source of variation

Fig. 3. CNPUF consists of CNPUF Parallel Elements

Carbon Nanotube PUF (3)

- Parallel CNFETs with manufacturing variations
 - CNT count, alignment, etc. can be different
 - m-CNT to s-CNT ratio can be different
- Each input bit controls one CNPUF-PE (parallel elements)
 - 10% to 33% m-CNTs -> Each CNPUF-PE has a different state for on and off operation
 - Input bits (challenge) determine which transistors are on, which are off
 - Current comparator determines output bit

Carbon Nanotube PUF (4)

- Motivation achieved: High area efficiency
 - 2 transistors per challenge bit
 - Compared to: $8\frac{T}{bit}$ for Arbiter PUF and $\frac{2^{N}-1}{N} 6\frac{T}{bit}$ for RO-PUF
 - In addition to the area reduction that CNT-technology promises for the future
- Motivation achieved: Power efficiency
 - Less transistors
 - Less power / transistor despite m-CNTs

Extended CNPUF

Fig. 4. Extended CNPUF for dynamic configuration

Extended CNPUF (2)

- CNPUF is lightweight, but provides limited flexibility
- Extended CNPUF enables dynamic security
 - Feedback of intermediate responses
 - Flexible number of iterations determine robustness against modeling
- Tradeoff Power/Energy vs. Security/Complexity

Fig. 4. Extended CNPUF for dynamic configuration

Experimental Evaluation

- HSPICE simulation with Stanford CNFET model
- 8-Bit implementation for large CRP-set in presence of long simulation times
 - 128-Bit as Proof of Concept

Experimental Evaluation (2)

- Limited comparability for PUFs
 - Different authors use different types of variation
 - Using new technology means relying on simulations
- Experiments with different variation cases
 - Case 1: Static temperature and supply voltage variations
 - Case 2: Case 1 + Dynamic temperature and local voltage variations

Experimental Evaluation (3)

SIMULATION PARAMETERS FOR CNPUF

Parameter	Range	
Temperature T	-20° to 80°C	
Dyn. Temp. T _{rand}	0° to 20°C	
Voltage variation	$\mu = 0.8V$ $3\sigma_{supply} = 22.5\%$ $3\sigma_{dynamic} = 7.5\%$	
CNT ratio variation		
Channel length variation	$\begin{array}{l} \mu_{channel} = 14nm \\ \sigma_{channel} = 7.5\% \end{array}$	

 \mathbb{I}

Experimental Evaluation (4)

COMPARISON OF HD_{intra} in different simulated PUF designs. Lower percentages mean higher robustness.

CNPUF	SCANPUF[24]	ROPUF[9]	CLOCKPUF[9]	CURRENT PUF[10]
1.9%	5%	9.51%	5.07%	~3%

COMPARISON OF *HD_{intra}* BETWEEN REAL PUF CIRCUITS AND CNPUF UNDER EXTENDED ENVIRONMENT SIMULATION.

CNPUF	BUTTERFLY PUF [8]	SRAM-PUF [25]
3.5%	6%	~8%-18%

Experimental Evaluation (5)

]

Experimental Evaluation (6)

POWER AND ENERGY COMPARISON BETWEEN CNPUF AND ULTRA -LOW POWER CURRENT-BASED PUF [10] AT 14NM AND 90NM.

Designs	CNPUF		Current based PUF [10]	
Technology	90nm, 1.2V	14nm, 0.8V	90nm	14nm, 0.8V
Power	15.6µW/bit	1.26µW/bit	150µW/bit	24µW/bit
Delay	43ps	26.5ps	250ps	~5ps
Energy	0.67fJ/bit	0.0334fJ/bit	37.5fJ/bit	0.12fJ/bit

For 90nm: 89.6% power and 98% energy reduction For 14nm: 94.75% power and 72.16% energy reduction

Conclusion & Outlook

- Lightweight PUF designs for new applications
- Simple design based on CNT-unique "feature"
 Turned CNT difficulty into advantage
- Introduced security as a new area that CNTs can contribute to
 - More than only good electrical properties
 - Various future possibilities based on CNPUF

Ĩ

Thank you. Questions?

Pictures

- [1] <u>http://www.tomas-sanchez.com</u>
- [2] <u>http://www.digitaltrends.com</u>
- [3] <u>http://www.cats.rwth-aachen.de</u>
- [4] <u>http://www.thenanoage.com</u>