CNPUF: A Carbon Nanotube-based Physically Unclonable Function for Secure Low-Energy Hardware Design

S. T. Choden Konigsmark, Leslie K. Hwang, Deming Chen, Martin D. F. Wong

University of Illinois at Urbana-Champaign

January 21, 2014
Outline

• Introduction
• Background
• Carbon Nanotube PUF (CNPUF)
• Extended CNPUF (ex-CNPUF)
• Experimental Evaluation
• Conclusion
Introduction

• New devices and technologies: **New Risks**
 – Wireless sensor networks / military, crisis detection
 – Wearable technology / privacy
 – Medical electronics / health
Introduction (2)

- Security cannot be handled by software alone
 - Encryption, protocols, etc. assume secure hardware elements
 - Attacks against hardware possible, e.g. imaging, probing, reading memory
- Silicon Physically Unclonable Functions (PUFs) by Gassend et al. as a main building block of hardware security
 - Unique and unpredictable challenge (input) to response (output) mapping based on manufacturing process variations
Introduction (3)

Fig. 1. Arbiter PUF

Fig. 2. Ring Oscillator PUF

Introduction (4)

- PUF Applications
 - Device identification
 - Device authentication
 - Random Number Generator
 - Secret Key Generator
 - Hardware Trojan Detection

- Properties
 - Volatile: Tampering results in wrong behavior
 - Reliability: Measured in Intra-Chip Hamming Distance
 - Uniqueness: Measured in Inter-Chip Hamming Distance

- Various Silicon PUFs exist:
 - Delay, Frequency, Current, Subthreshold, ...
 - Explore emerging technologies for new variation sources
Background

- Carbon Nanotubes (CNTs) promising candidate for future electronics
 - Desirable properties (strong, high conductivity, ...)
- CNTs are technology of the future, but very fast paced development
 - First computer (1kHz) consisting of CNTs exclusively

Carbon nanotube computer, Shulaker et al., Nature 2013
Background (2)

- Can be thought of as a rolled Graphene sheet
 - Chirality of the CNT describes the way it is rolled
 - Determines band gap and type as metallic CNT (m-CNT) or semiconducting CNT (s-CNT)
Background (3)

• CNT Field Effect Transistors (CNFETs) are very difficult to control
 – Chirality, Diameter
 – Growth / Density
 – Alignment
 – Doping concentration

• Naturally 1/3 of CNTs are metallic
 – Improved processes available, but cannot achieve 100% s-CNT required for digital logic applications
Background (4)

• Metallic CNTs can lead to undesired effects
 – Drain-to-Source shorting
 – Low Ion/Ioff ratio

• Metallic CNT removal can also be complicated
 – Residue of metallic CNTs
 – Damaged semiconducting CNTs
 – There is a possibility that not all of the m-CNTS are removed
Carbon Nanotube PUF

• Observation in CNFET:
 – m-CNTs dominate off-behavior
 – m-CNTs and s-CNTS determine on-behavior together
 – Number of s-CNTs significantly larger than m-CNTs

• Constellation of m-CNTs and s-CNTs as dominant source of static variation
 – m-CNT burning not required

• Current as metric to take advantage of all the different process variations
Carbon Nanotube PUF (2)

- Exploit unique CNT characteristic to achieve simple and efficient design
 - Problematic m-CNTs provide main source of variation

Fig. 3. CNPUF consists of CNPUF Parallel Elements
Carbon Nanotube PUF (3)

- Parallel CNFETs with manufacturing variations
 - CNT count, alignment, etc. can be different
 - m-CNT to s-CNT ratio can be different
- Each input bit controls one CNPUF-PE (parallel elements)
 - 10% to 33% m-CNTs -> Each CNPUF-PE has a different state for on and off operation
 - Input bits (challenge) determine which transistors are on, which are off
 - Current comparator determines output bit
Carbon Nanotube PUF (4)

• Motivation achieved: High area efficiency
 – 2 transistors per challenge bit
 – Compared to: \(8 \frac{T}{\text{bit}}\) for Arbiter PUF and \(\frac{2^N-1}{N} \cdot 6 \frac{T}{\text{bit}}\) for RO-PUF
 – In addition to the area reduction that CNT-technology promises for the future

• Motivation achieved: Power efficiency
 – Less transistors
 – Less power / transistor despite m-CNTs
Extended CNPUF

Fig. 4. Extended CNPUF for dynamic configuration
Extended CNPUF (2)

• CNPUF is lightweight, but provides limited flexibility
• Extended CNPUF enables dynamic security
 – Feedback of intermediate responses
 – Flexible number of iterations determine robustness against modeling
• Tradeoff Power/Energy vs. Security/Complexity

Fig. 4. Extended CNPUF for dynamic configuration
Experimental Evaluation

- HSPICE simulation with Stanford CNFET model
- 8-Bit implementation for large CRP-set in presence of long simulation times
 - 128-Bit as Proof of Concept

Fig. 5. CNFET equiv. circuit for simulation
Experimental Evaluation (2)

• Limited comparability for PUFs
 – Different authors use different types of variation
 – Using new technology means relying on simulations

• Experiments with different variation cases
 – Case 1: Static temperature and supply voltage variations
 – Case 2: Case 1 + Dynamic temperature and local voltage variations
Experimental Evaluation (3)

Simulation Parameters for CNPUF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature T</td>
<td>$-20^\circ \text{ to } 80^\circ \text{C}$</td>
</tr>
<tr>
<td>Dyn. Temp. T_{rand}</td>
<td>$0^\circ \text{ to } 20^\circ \text{C}$</td>
</tr>
<tr>
<td>Voltage variation</td>
<td>$\mu = 0.8V$ \hspace{1cm} $3\sigma_{\text{supply}} = 22.5%$ \hspace{1cm} $3\sigma_{\text{dynamic}} = 7.5%$</td>
</tr>
<tr>
<td>CNT ratio variation</td>
<td>$\mu_{\text{ratio}} = {0.1, 0.2, 0.3}$ \hspace{1cm} $3\sigma_{\text{phy}} = 22.5%$</td>
</tr>
<tr>
<td>Channel length variation</td>
<td>$\mu_{\text{channel}} = 14\text{nm}$ \hspace{1cm} $\sigma_{\text{channel}} = 7.5%$</td>
</tr>
</tbody>
</table>
Experimental Evaluation (4)

Comparison of HD_{intra} in different simulated PUF designs. Lower percentages mean higher robustness.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9%</td>
<td>5%</td>
<td>9.51%</td>
<td>5.07%</td>
<td>~3%</td>
</tr>
</tbody>
</table>

Comparison of $H D_{intra}$ between real PUF circuits and CNPUF under extended environment simulation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5%</td>
<td>6%</td>
<td>~8% - 18%</td>
</tr>
</tbody>
</table>
Experimental Evaluation (5)
Experimental Evaluation (6)

<table>
<thead>
<tr>
<th>Designs</th>
<th>CNPUF</th>
<th>Current based PUF [10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>90nm, 1.2V</td>
<td>14nm, 0.8V</td>
</tr>
<tr>
<td>Power</td>
<td>15.6μW/bit</td>
<td>1.26μW/bit</td>
</tr>
<tr>
<td>Delay</td>
<td>43ps</td>
<td>26.5ps</td>
</tr>
<tr>
<td>Energy</td>
<td>0.67fJ/bit</td>
<td>0.0334fJ/bit</td>
</tr>
</tbody>
</table>

For 90nm: 89.6% power and 98% energy reduction
For 14nm: 94.75% power and 72.16% energy reduction
Conclusion & Outlook

• Lightweight PUF designs for new applications
• Simple design based on CNT-unique “feature”
 – Turned CNT difficulty into advantage
• Introduced security as a new area that CNTs can contribute to
 – More than only good electrical properties
 – Various future possibilities based on CNPUF
Thank you.

Questions?
Pictures