Ceatech to industry

www.cea.fr

3DCoB: A new design approach for Monolithic 3D Integrated Circuits

CEA-Leti, Grenoble, FRANCE

Hossam SARHAN, Sébastien THURIES, Olivier BILLOINT & Fabien CLERMIDY

ASP-DAC, Singapore, Jan 2014

- Introduction to 3D Integrated Circuits
- 3D Monolithic Integration (3DMI) Technology
- Previous 3DMI Approaches
- 3D Cell-on-Buffer (3DCoB) Approach
- 3DCoB Design Flow
- Results and Conclusion

- Introduction to 3D Integrated Circuits
- 3D Monolithic Integration (3DMI) Technology
- Previous 3DMI Approaches
- 3D Cell-on-Buffer (3DCoB) Approach
- **3DCoB Design Flow**
- Results and Conclusion

Introduction to 3D Integrated Circuits

Why logic-on-logic 3D stacking ?

- Better performances (shorten wires \rightarrow less delay)
- Less power (shorten wires \rightarrow less parasitics)
- Smaller footprint.
- > Overcomes technology scaling limitation !

3D Technology Limitations:

- Large size of the 3D interconnects (area overhead).
- Limited number of vertical interconnects (3D-Vias).
- 3D interconnects parasitics (resistance/capacitance).

3D Integration Technologies

- Parallel Integration
 Dies fabricated separately then
 vertically stacked, such as:
 - Passive/Active Interposer
 - ➔ Through-Silicon-Via (TSV)
 - Copper-to-Copper (Cu-Cu) contact
 - → High-Density TSVs
- Sequential Integration
 Second transistor layer is fabricated directly on the top of first one.
 (Cold process)
 - ➔ 3D Monolithic Integration (3DMI)

- Introduction to 3D Integrated Circuits
- 3D Monolithic Integration (3DMI) Technology
- Previous 3DMI Approaches
- 3D Cell-on-Buffer (3DCoB) Approach
- **3DCoB Design Flow**
- Results and Conclusion

Monolithic 3D Integration Technology

- + Second transistor layer is fabricated sequentially on top of the first one.
- + High alignment precision, and very small 3D vias
 - → 30 times smaller compared to state-of-the-art "HD-TSV & Cu-Cu"

[*] P. Batude et al.,"Demonstration of low-temperature 3D sequential FDSOI integration down to 50 nm gate length" VLSI Technology (VLSIT), symposium on, IEEE, 2011.

- Introduction to 3D Integrated Circuits
- 3D Monolithic Integration (3DMI) Technology
- Previous 3DMI Approaches
- 3D Cell-on-Buffer (3DCoB) Approach
- **3DCoB Design Flow**
- Results and Conclusion

Previous 3DMI Approaches (1/2)

1. Gate-level approach (Cell-on-Cell)

+ Using 2D CMOS standard cells.

- Incompatible with the conventional 2D design flow.

Previous 3DMI Approaches (2/2)

2. Transistor-level Integration (NMOS/PMOS)

- + Compatible with the conventional 2D design flow.
- 3D NMOS-over-PMOS (N/P) cells are needed.

- Introduction to 3D Integrated Circuits
- 3D Monolithic Integration (3DMI) Technology
- Previous 3DMI Approaches
- 3D Cell-on-Buffer (3DCoB) Approach
- **3DCoB Design Flow**
- Results and Conclusion

Proposed Approach: "3D Cell-on-Buffer"

- Split <u>non-minimum drive</u> cells into 2 tiers:
 - Min drive logic cell in top tier.
 - Driving buffer into bottom tier.

• Min drive cells are still in 2D (planar).

Proposed Approach: "3D Cell-on-Buffer"

• Consequently the 3DCoB set of cells will be:

Comparison with other approaches

"3D Cell-on-Buffer (3DCoB)" vs. "Cell-on-Cell" vs. "N/P"

	N/P Cell-on-Cell		3DCoB (our work)	
2D Design flow compatibility	Yes	No	Yes	
Using 2D standard cells	No	Yes	Yes	
Using inter-tier routing metal layers	No	Yes	Νο	
Usage of inter-tier vias	In every cell	Between cells (if req.)	Only in the 3D cells	

- Introduction to 3D Integrated Circuits
- 3D Monolithic Integration (3DMI) Technology
- Previous 3DMI Approaches
- 3D Cell-on-Buffer (3DCoB) Approach
- 3DCoB Design Flow
- Results and Conclusion

3DCoB Design Flow

3DCoB Design Flow : LIB generation

3DCoB Design Flow: LEF generation

- Area of 3D Cell-on-Buffer Cells depends on:
 - 1. Area of the buffer (A_{BUF}) compared to the min-drive cell $(A_{MIN-CELL})$.
 - 2. Inter-tier Via pitch (P_{VIA})

- Introduction to 3D Integrated Circuits
- 3D Monolithic Integration (3DMI) Technology
- Previous 3DMI Approaches
- 3D Cell-on-Buffer (3DCoB) Approach
- **3DCoB Design Flow**
- Results and Conclusion

Results: 3DCoB Input Capacitance

Results: FFT & AES blocks in 28nm FDSOI

		# Std Cells	Cell Density	Perf ¹ (GHz)	Perf ¹ Gain (%)	Power ² (mW)	Power ² Loss (%)
FFT Target freq=1.67GHz Area=0.027mm ²	2D	24771	95%	1.33		36.001	
	3DCoB	26210	93%	1.51	13.53%	37.452	-4.03%
AES Target freq=2.55GHz Area= 0.119mm ²	2D	164174	89%	2.00		249.774	
	3DCoB	166749	90%	2.41	20.5%	263.165	-5.36%

¹ Performance is measured as the effective clock frequency (target clock period without slack time)

² Power is calculated with activity factor (0.15) using SoC Encounter power reports

Results: Performance of AES-128 block

Results: Power of AES-128 block

Conclusions

- 3D Cell-on-Buffer (3DCoB) architecture shows:
 - Improvement in performances (~ 20 to 35%)
 - Compatible design flow with 2D EDA tools.
 - Limited impact on power consumption.
 - No need for inter-tier routing metal layer in the bottom tier.
 - No clock synchronization issue between the two tiers.
- Thermal impact needs to be studied as well !
 - Targeted low-power applications will limit this issue

Thank You Questions ?

Centre de Grenoble 17 rue des Martyrs 38054 Grenoble Cedex Centre de Saclay Nano-Innov PC 172 91191 Gif sur Yvette Cedex

Centre de Grenoble 17 rue des Martyrs 38054 Grenoble Cedex

11/1

Centre de Saclay Nano-Innov PC 172 91191 Gif sur Yvette Cedex

