Semi-Analytical Current Source Modeling of FinFET Devices Operating in Near/Sub-Threshold Regime with Independent Gate Control and Considering Process Variation

T. Cui, Y. Wang, X. Lin, S. Nazarian and M. Pedram
University of Southern California, Los Angeles, CA, United States
Outlines

• Introduction
 • Motivation
 • Extend CSM to FinFET Devices
• Characteristics of FinFET Devices
 • Independent Gate Control in FinFET
 • Process Variations in FinFET
• Semi-Analytical CSM for FinFET Devices
 • The Impact on the Threshold Voltage
 • Driving Current Modeling
 • Parasitic Capacitance Modeling
 • CSM LUT Construction
• Experimental Results
Motivation

- Standard timing models and static timing analysis (STA) methods can not provide sufficient accuracy.
- Current Source Model (CSM) is an alternative approach that is much more effective in dealing with noise and variability in today’s designs.
Extend CSM to FinFET Devices

- Nanoscale FinFET devices are emerging as the transistor of choice in 14nm CMOS technologies and beyond.
- The needs to reduce power consumption in VLSI circuits are driving the push toward ultra-voltage scaled CMOS designs.
- We extend the CSM approach to handle VLSI circuits comprised of FinFET devices with independent gate control operating in the near/sub-threshold voltage regime and subject to process variations.
- **Method**: combine non-linear analytical models and low-dimensional CSM lookup tables to simultaneously achieve high modeling accuracy and time/space efficiency.
Outlines

• Introduction
 • Motivation
 • Extend CSM to FinFET Devices

• Characteristics of FinFET Devices
 • Independent Gate Control in FinFET
 • Process Variations in FinFET

• Semi-Analytical CSM for FinFET Devices
 • The Impact on the Threshold Voltage
 • Driving Current Modeling
 • Parasitic Capacitance Modeling
 • CSM LUT Construction

• Experimental Results
The FinFET structure allows for fabrication of separate front and back gates.

Each fin is essentially a parallel connection of the front-gate-controlled FET and the back-gate-controlled FET.

The front and back gates can be tied to the same or different control signals, which allows for more feasible designs.

The threshold voltage of the front-gate-controlled FET \((V_{th,F}) \) varies in response to the back-gate voltage \((V_{BN}) \), and vice versa.
Two major sources of process variation in a FinFET transistor:

- *Line-Edge Roughness (LER)*: causes variation of the effective channel length, denoted by ΔL.
- *Gate Work-Function Variation (WFV)*: causes variation of the intrinsic threshold voltage, denoted by ΔV_{th0}.

Build equivalent CSM for FinFET devices considering these characteristics

- Solution 1: extend the standard CSM LUTs to high dimensions. (result in an unacceptable memory space requirement)
- Solution 2: store the LUTs when $\Delta V_{th0} = 0$ and $\Delta L = 0$, and apply polynomial corrections for process variations. (turn out to be both inaccurate and cost-ineffective)
- Our solution: Semi-Analytical CSM
Outlines

• Introduction
 • Motivation
 • Extend CSM to FinFET Devices

• Characteristics of FinFET Devices
 • Independent Gate Control in FinFET
 • Process Variations in FinFET

• Semi-Analytical CSM for FinFET Devices
 • The Impact on the Threshold Voltage
 • Driving Current Modeling
 • Parasitic Capacitance Modeling
 • CSM LUT Construction

• Experimental Results
The Impact on the Threshold Voltage

- Decreasing the back-gate voltage of the N-type fin results in the increase of V_{th} of the front-gate-controlled N-type FET.

- We use a piecewise linear function to represent the impact of the back-gate voltage V_{BN} on the change of the threshold voltage $V_{th}(V_{BN})$:

$$V_{th}(V_{BN}) = \begin{cases} V_{th,\text{max}}, & V_{BN} < V_{BN,\text{min}} \\ k_1 V_{BN}, & V_{BN,\text{min}} \leq V_{BN} < 0 \\ k_2 V_{BN}, & 0 \leq V_{BN} < V_{BN,\text{max}} \\ V_{th,\text{min}}, & V_{BN} \geq V_{BN,\text{max}} \end{cases}$$
Driving Current Modeling

- Considering both the back-gate voltage and process variations, the threshold voltage of the front-gate-controlled FET is given by
 \[V_{th,F} = V_{th0} + \Delta V_{th}(V_{BN}) + \Delta V_{th0}. \]
- Similarly, the threshold voltage of the back-gate-controlled FET is
 \[V_{th,B} = V_{th0} + \Delta V_{th}(V_{FN}) + \Delta V_{th0}. \]
- \(I_N \) (or \(I_P \)) is the sum of the driving currents of the front gate and the back gate:
 \[I_N = I_{FN} + I_{BN}. \]
- \(L = L_0 + \Delta L \)
- We fit \(I_{FN} \) with respect to \(\Delta L \) and \(\Delta V_{th0} \) based on the transregional model by using the functional form
 \[I_{FN}(V_{FN}, V_{BN}, V_{ds}, \Delta L, \Delta V_{th0}) = \frac{C(V_{FN}, V_{ds})}{L} \cdot e^{A(V_{FN}, V_{ds}) \cdot V_{th,F}^2 + B(V_{FN}, V_{ds}) \cdot V_{th,F}} \]
- \(A(V_{FN}, V_{ds}) \), \(B(V_{FN}, V_{ds}) \), and \(C(V_{FN}, V_{ds}) \) are some fitting parameters.
• Generate similar analytical equations for parasitic capacitances associated with a FinFET gate in terms of the sources of variation and store corresponding regression coefficients.

• Linear curve fitting is able to capture the dependency of the equivalent capacitances on the above-mentioned parameters.
CSM LUT Construction

• In the characterization phase:
 • Perform characterization as well as curve fitting as mentioned earlier and record the coefficient into the LUTs with index of interested voltage levels.

• In the evaluation phase:
 • Use the coefficient LUTs to construct the customized CSM LUTs including I_o, C_M, C_i, and C_o under every voltage pair (V_i, V_o), under different corners of process variation parameters and bias voltage levels, e.g., ΔL, ΔV_{th0} and V_{BN} (or V_{FN}).

• The constructed CSM LUTs can be used to calculate the exact output waveform given the waveform of the input voltage.
Outlines

• Introduction
 • Motivation
 • Extend CSM to FinFET Devices
• Characteristics of FinFET Devices
 • Independent Gate Control in FinFET
 • Process Variations in FinFET
• Semi-Analytical CSM for FinFET Devices
 • The Impact on the Threshold Voltage
 • Driving Current Modeling
 • Parasitic Capacitance Modeling
 • CSM LUT Construction
• Experimental Results
Fitting result of driving current

• Our proposed method achieves very good fitting quality with an average error of 0.81%. The fittings of the driving currents are performed for every point \((V_{FN}, V_{ds})\).
Output waveform under noisy input

Output waveforms for different CSM variation handing techniques under a noise input at different threshold voltage variation levels
Thank you

T. Cui, Y. Wang, X. Lin, S. Nazarian and M. Pedram
University of Southern California, Los Angeles, CA, United States