

Semi-Analytical Current Source Modeling of FinFET Devices Operating in Near/Sub-Threshold Regime with Independent Gate Control and Considering Process Variation

T. Cui, Y. Wang, X. Lin, S. Nazarian and <u>M. Pedram</u> University of Southern California, Los Angeles, CA, United States

System Power Olimization and Regulation Technology

- Motivation
- Extend CSM to FinFET Devices
- Characteristics of FinFET Devices
 - Independent Gate Control in FinFET
 - Process Variations in FinFET
- Semi-Analytical CSM for FinFET Devices
 - The Impact on the Threshold Voltage
 - Driving Current Modeling
 - Parasitic Capacitance Modeling
 - CSM LUT Construction
- Experimental Results

Motivation

- Standard timing models and static timing analysis (STA) methods can not provide sufficient accuracy.
- Current Source Model (CSM) is an alternative approach that is much more effective in dealing with noise and variability in today's designs.

Equivalent CSM for a CMOS inverter

Extend CSM to FinFET Devices

- Nanoscale FinFET devices are emerging as the transistor of choice in 14nm CMOS technologies and beyond.
- The needs to reduce power consumption in VLSI circuits are driving the push toward ultra-voltage scaled CMOS designs.
- We extend the CSM approach to handle VLSI circuits comprised of FinFET devices with independent gate control operating in the near/sub-threshold voltage regime and subject to process variations.
- Method: combine non-linear analytical models and lowdimensional CSM lookup tables to simultaneously achieve high modeling accuracy and time/space efficiency.

- Motivation
- Extend CSM to FinFET Devices
- Characteristics of FinFET Devices
 - Independent Gate Control in FinFET
 - Process Variations in FinFET
- Semi-Analytical CSM for FinFET Devices
 - The Impact on the Threshold Voltage
 - Driving Current Modeling
 - Parasitic Capacitance Modeling
 - CSM LUT Construction
- Experimental Results

Independent Gate Control for FinFET Devices

- The FinFET structure allows for fabrication of separate front and back gates.
- Each fin is essentially a parallel connection of the front-gatecontrolled FET and the back-gate-controlled FET.
- The front and back gates can be tied to the same or different control signals, which allows for more feasible designs.

Different FinFET-based NAND gate designs

• The threshold voltage of the front-gate-controlled FET ($V_{th,F}$) varies in response to the back-gate voltage (V_{BN}), and vice versa.

Process Variations in FinFET Devices

- Two major sources of process variation in a FinFET transistor:
 - Line-Edge Roughness (LER): causes variation of the effective channel length, denoted by ΔL .
 - Gate Work-Function Variation (WFV): causes variation of the intrinsic threshold voltage, denoted by ΔV_{th0} .
- Build equivalent CSM for FinFET deivces considering these characteristics
 - Solution1: extend the standard CSM LUTs to high dimensions. (result in an unacceptable memory space requirement)
 - Solution2: store the LUTs when $\Delta V_{th0} = 0$ and $\Delta L = 0$, and apply polynomial corrections for process variations. (turn out to be both inaccurate and cost-ineffective)
 - Our solution: Semi-Analytical CSM

- Motivation
- Extend CSM to FinFET Devices
- Characteristics of FinFET Devices
 - Independent Gate Control in FinFET
 - Process Variations in FinFET
- Semi-Analytical CSM for FinFET Devices
 - The Impact on the Threshold Voltage
 - Driving Current Modeling
 - Parasitic Capacitance Modeling
 - CSM LUT Construction
- Experimental Results

The Impact on the Threshold Voltage

- Decreasing the back-gate voltage of the N-type fin results in the increase of V_{th} of the front-gate-controlled N-type FET.
- We use a piecewise linear function to represent the impact of the back-gate voltage V_{BN} on the change of the threshold voltage $V_{th}(V_{BN})$:

$$V_{th}(V_{BN}) = \begin{cases} V_{th,max}, & V_{BN} < V_{BN,min} \\ k_1 V_{BN}, & V_{BN,min} \le V_{BN} < 0 \\ k_2 V_{BN}, & 0 \le V_{BN} < V_{BN,max} \\ V_{th,min}, & V_{BN} \ge V_{BN,max} \end{cases}$$

Driving Current Modeling

- Considering both the back-gate voltage and process variations, the threshold voltage of the front-gate-controlled FET is given by $V_{th,F} = V_{th0} + \Delta V_{th}(V_{BN}) + \Delta V_{th0}$.
- Similarly, the threshold voltage of the back-gate-controlled FET is $V_{th,B} = V_{th0} + \Delta V_{th}(V_{FN}) + \Delta V_{th0}$.
- I_N (or I_P) is the sum of the driving currents of the front gate and the back gate: $I_N = I_{FN} + I_{BN}$.
- $L = L_0 + \Delta L$
- We fit I_{FN} with respect to ΔL and ΔV_{th0} based on the transregional model by using the functional form
- $I_{FN}(V_{FN}, V_{BN}, V_{ds}, \Delta L, \Delta V_{th0}) = \frac{C(V_{FN}, V_{ds})}{L} \cdot e^{A(V_{FN}, V_{ds}) \cdot V_{th,F}^2 + B(V_{FN}, V_{ds}) \cdot V_{th,F}}$
- $A(V_{FN}, V_{ds})$, $B(V_{FN}, V_{ds})$, and $C(V_{FN}, V_{ds})$ are some fitting parameters.

Parasitic Capacitance Modeling

- Generate similar analytical equations for parasitic capacitances associated with a FinFET gate in terms of the sources of variation and store corresponding regression coefficients.
- Linear curve fitting is able to capture the dependency of the equivalent capacitances on the above-mentioned parameters.

CSM LUT Construction

- In the characterization phase:
 - Perform characterization as well as curve fitting as mentioned earlier and record the coefficient into the LUTs with index of interested voltage levels.
- In the evaluation phase:
 - Use the coefficient LUTs to construct the customized CSM LUTs including I_{o} , C_{M} , C_{i} and C_{o} under every voltage pair (V_{i}, V_{o}) , under different corners of process variation parameters and bias voltage levels, e.g., ΔL , ΔV_{th0} and V_{BN} (or V_{FN}).
- The constructed CSM LUTs can be used to calculate the exact output waveform given the waveform of the input voltage.

- Motivation
- Extend CSM to FinFET Devices
- Characteristics of FinFET Devices
 - Independent Gate Control in FinFET
 - Process Variations in FinFET
- Semi-Analytical CSM for FinFET Devices
 - The Impact on the Threshold Voltage
 - Driving Current Modeling
 - Parasitic Capacitance Modeling
 - CSM LUT Construction
- Experimental Results

Fitting result of driving current

 Our proposed method achieves very good fitting quality with an average error of 0.81%. The fittings of the driving currents are performed for every point (V_{FN}, V_{ds}).

Curve fitting of N-type FET driving current under different corners of process variation

Output waveform under noisy input

Output waveforms for different CSM variation handing techniques under a noise input at different threshold voltage variation levels

Thank you

T. Cui, Y. Wang, X. Lin, S. Nazarian and <u>M. Pedram</u> University of Southern California, Los Angeles, CA, United States

System Power Otimization and Regulation Technology