

ArISE: Aging-Aware Instruction Set Encoding for Lifetime Improvement

F. Oboril and M. Tahoori | January 21, 2014

INSTITUTE OF COMPUTER ENGINEERING (ITEC) - CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

Nanoscale Reliability Challenge

Transistor aging increases device delays during runtime

Nanoscale Reliability Challenge

Transistor aging increases device delays during runtime

Nanoscale Reliability Challenge

Transistor aging increases device delays during runtime

Problem Statement

Instruction opcode significantly impacts lifetime of various pipeline stages \Rightarrow Optimization potential: Performance, area, power and MTTF¹

¹: Mean Time To Failure (MTTF) := Time to first timing violation due to aging

Nanoscale Reliability Challenge

Transistor aging increases device delays during runtime

Problem Statement

Instruction opcode significantly impacts lifetime of various pipeline stages \Rightarrow Optimization potential: Performance, area, power and MTTF¹

Proposed Solution

Aging-Aware Instruction Set Encoding: ArISE

¹: Mean Time To Failure (MTTF) := Time to first timing violation due to aging

F. Oboril, M. Tahoori - ArISE: Aging-Aware Instruction Set Encoding for Lifetime Improvement

Outline

Preliminaries

Motivation

- ArISE: Aging-Aware Instruction Set Encoding
- Heuristic: Simulated Annealing
- Hierarchical Approach
- Aging Estimation Flow
- Application in a real system

Results

Conclusion

Outline

Preliminaries

Motivation

3 Related Work

4 ArISE: Aging-Aware Instruction Set Encoding

- Heuristic: Simulated Annealing
- Hierarchical Approach
- Aging Estimation Flow
- Application in a real system

5 Results

Conclusion

Preliminaries: Terminology

- Opcode
- $\rightarrow\,$ Binary representation of an instruction
 - e.g. ADD \rightarrow 00011101
 - Instruction Set Encoding (ISE):
- $\rightarrow\,$ Mapping of instructions to their opcodes

	BNE	\rightarrow	02
e.g.	LW	\rightarrow	<i>c</i> 5
	SB	\rightarrow	<i>a</i> 3
	ADD	\rightarrow	1 <i>d</i>
	OR	\rightarrow	2 <i>a</i>
	JMP	\rightarrow	05

Transistor Aging is caused by:

Transistor Aging is caused by:

- Bias Temperature Instability (BTI)
 - Negative BTI (NBTI): PMOS' $|V_{th}|$ \uparrow
 - Positive BTI (PBTI): NMOS' $|V_{th}|$ \uparrow

Transistor Aging is caused by:

Bias Temperature Instability (BTI)

- Negative BTI (NBTI): PMOS' |V_{th}| ↑
- Positive BTI (PBTI): NMOS' $|V_{th}|$ \uparrow
- Hot Carrier Injection (HCI)

• Affects mainly NMOS: $|V_{th}|$ \uparrow

Transistor Aging is caused by:

- Bias Temperature Instability (BTI)
 - Negative BTI (NBTI): PMOS' |V_{th}| ↑
 - Positive BTI (PBTI): NMOS' $|V_{th}|$ \uparrow
- Hot Carrier Injection (HCI)
 - Affects mainly NMOS: $|V_{th}|$ \uparrow

 \Rightarrow Path delays increase over time \Rightarrow Pipeline stage delays increase

Transistor Aging is caused by:

- Bias Temperature Instability (BTI)
 - Negative BTI (NBTI): PMOS' |V_{th}| ↑
 - Positive BTI (PBTI): NMOS' $|V_{th}|$ \uparrow
- Hot Carrier Injection (HCI)
 - Affects mainly NMOS: $|V_{th}|$ \uparrow

 \Rightarrow Path delays increase over time \Rightarrow Pipeline stage delays increase

1st order factors on BTI and HCI:

		BTI	HCI
Temperature	(<i>T</i>)	exponential	exponential
Frequency	(<i>f</i>)	-	sublinear
Voltage	(V_{dd})	exponential	exponential
Exec. Time	(<i>t</i>)	sublinear	sublinear
Usage		sublinear	sublinear

Transistor Aging is caused by:

- Bias Temperature Instability (BTI)
 - Negative BTI (NBTI): PMOS' $|V_{th}|$ \uparrow
 - Positive BTI (PBTI): NMOS' |V_{th}| ↑
- Hot Carrier Injection (HCI)
 - Affects mainly NMOS: $|V_{th}|$ \uparrow

 \Rightarrow Path delays increase over time \Rightarrow Pipeline stage delays increase

1st order factors on BTI and HCI:

			BTI	HCI
Depends on stage inputs $(\rightarrow \text{ opcode})$	Temperature	(<i>T</i>)	exponential	exponential
	Frequency	(<i>f</i>)	-	sublinear
	Voltage	(V_{dd})	exponential	exponential
	Exec. Time	(<i>t</i>)	sublinear	sublinear
	Usage		sublinear	sublinear

Transistor Aging is caused by:

- Bias Temperature Instability (BTI)
 - Negative BTI (NBTI): PMOS' $|V_{th}|$ \uparrow
 - Positive BTI (PBTI): NMOS' $|V_{th}|$ \uparrow
- Hot Carrier Injection (HCI)
 - Affects mainly NMOS: $|V_{th}|$ \uparrow

 $\Rightarrow~$ Path delays increase over time $\Rightarrow~$ Pipeline stage delays increase

1st order factors on BTI and HCI:

			BTI	HCI	
Depends on stage inputs $(\rightarrow \text{ opcode})$	Temperature	(<i>T</i>)	exponential	exponential	
	Frequency	(<i>f</i>)	-	sublinear	
	Voltage	(V_{dd})	exponential	exponential	
	Exec. Time	(<i>t</i>)	sublinear	sublinear	
	Usage		sublinear	sublinear	
\rightarrow Delay increases depends on the instruction encodes					

Outline

Preliminaries

Motivation

- 3 Related Work
- 4 ArISE: Aging-Aware Instruction Set Encoding
 - Heuristic: Simulated Annealing
 - Hierarchical Approach
 - Aging Estimation Flow
 - Application in a real system
- 5 Results

Conclusion

Question: How much influence has the instruction set encoding (ISE) ?

mapping of instructions to their opcodes

affects circuit design and inputs

Question: How much influence has the instruction set encoding (ISE) ?

Observations:

- ISE has significant impact on decoding stages
- \rightarrow Difference of 2 % or more than 2x in MTTF
- Predecode can limit the entire microprocessor lifetime

Question: How much influence has the instruction set encoding (ISE) ?

Predecode can limit the entire microprocessor lifetime

Outline

Preliminaries

2 Motivation

Related Work

- ArISE: Aging-Aware Instruction Set Encoding
 - Heuristic: Simulated Annealing
 - Hierarchical Approach
 - Aging Estimation Flow
 - Application in a real system
- 5 Results

Conclusion

Related Work

- Aging mitigation techniques at various design levels
 - $\rightarrow~$ Orthogonal to this work
 - At (micro)-architecture-level focus is mostly on execution stage
 - For pipeline frontend [DeBole2009] proposed periodical opcode inversion
- Instruction Set Encoding
 - \Rightarrow Well-known for energy reduction (e.g. reduce switching activity)
 - Most works focus on memories, e.g. instruction buffers
- Our work
 - Find best ISE in terms of lifetime
 - ightarrow Power or energy can be affected
 - More efficient than [DeBole2009] as "our" ISE is aging-aware

Outline

Preliminaries

Motivation

3 Related Work

- ArISE: Aging-Aware Instruction Set Encoding
 - Heuristic: Simulated Annealing
 - Hierarchical Approach
 - Aging Estimation Flow
 - Application in a real system

5 Results

Conclusion

ArISE – Overview

Naïve approach: All opcode bits are optimized in parallel

ArISE – Overview

Naïve approach: All opcode bits are optimized in parallel Enhanced approach: Partition opcode bits and optimize the partitions

Arise – Heuristic: Simulated Annealing

- $\textcircled{0} 2 \text{ ISEs are neighbors} \Leftrightarrow$
 - a) ISEs differ in only 1 opcode or
 - b) 2nd ISE is derived from 1st by exchanging 2 opcodes

Arise – Heuristic: Simulated Annealing

- $\textcircled{0} 2 \text{ ISEs are neighbors} \Leftrightarrow$
 - a) ISEs differ in only 1 opcode or
 - b) 2nd ISE is derived from 1st by exchanging 2 opcodes
- Extract MTTF & aged delays for each pipeline stage

Arise – Heuristic: Simulated Annealing

F. Oboril, M. Tahoori - ArISE: Aging-Aware Instruction Set Encoding for Lifetime Improvement

- Oreate groups/subgroups for all instructions
- Pank groups/subgroups according to their aging impact
 - Aging is unknown \rightarrow Impact on hardware-implementation can be used

- Oreate groups/subgroups for all instructions
- Pank groups/subgroups according to their aging impact
 - Aging is unknown \rightarrow Impact on hardware-implementation can be used

- Oreate groups/subgroups for all instructions
- Pank groups/subgroups according to their aging impact
 - Aging is unknown \rightarrow Impact on hardware-implementation can be used
- Optimize each group/subgroup independently

- Oreate groups/subgroups for all instructions
- Pank groups/subgroups according to their aging impact
 - Aging is unknown ightarrow Impact on hardware-implementation can be used
- Optimize each group/subgroup independently

- Oreate groups/subgroups for all instructions
- Pank groups/subgroups according to their aging impact
 - Aging is unknown \rightarrow Impact on hardware-implementation can be used
- Optimize each group/subgroup independently

- Oreate groups/subgroups for all instructions
- Pank groups/subgroups according to their aging impact
 - Aging is unknown \rightarrow Impact on hardware-implementation can be used
- Optimize each group/subgroup independently

- Oreate groups/subgroups for all instructions
- Pank groups/subgroups according to their aging impact
 - Aging is unknown ightarrow Impact on hardware-implementation can be used
- Optimize each group/subgroup independently

- Oreate groups/subgroups for all instructions
- Pank groups/subgroups according to their aging impact
 - Aging is unknown \rightarrow Impact on hardware-implementation can be used
- Optimize each group/subgroup independently

- Oreate groups/subgroups for all instructions
- Pank groups/subgroups according to their aging impact
 - Aging is unknown \rightarrow Impact on hardware-implementation can be used
- Optimize each group/subgroup independently

Arise – Further Optimizations

- Store all evaluated ISEs
 - \rightarrow Avoid re-evaluation of ISE
 - $\rightarrow~$ Best ISE can be picked, even if it is not the last one
- Aging estimation is time consuming
 - \rightarrow With enhanced aging estimation
 - 1 simulated annealing loop needs 4 min
 - Limited by time for re-synthesis
 - \Rightarrow 100 steps in less than 6 hours

F. Oboril, M. Tahoori - ArISE: Aging-Aware Instruction Set Encoding for Lifetime Improvement

F. Oboril, M. Tahoori - ArISE: Aging-Aware Instruction Set Encoding for Lifetime Improvement

F. Oboril, M. Tahoori - ArISE: Aging-Aware Instruction Set Encoding for Lifetime Improvement

F. Oboril, M. Tahoori - ArISE: Aging-Aware Instruction Set Encoding for Lifetime Improvement

F. Oboril, M. Tahoori - ArISE: Aging-Aware Instruction Set Encoding for Lifetime Improvement

- Only one simulation step
- Time for signal property propagation is negligible
- Time for SAIF modification is negligible
- \Rightarrow Runtime: Few seconds vs. \approx 30 min. for 10⁶ clock cycles
- Disadvantage: Reduced accuracy due to signal property propagation
 - But: Inaccuracy less than 0.5% in delta delay
 - \Rightarrow Good enough for optimization

ArISE – Application of Modified ISE

Modified ISE \Rightarrow Old software binaries are incompatible!

ArISE – Application of Modified ISE

Modified ISE \Rightarrow Old software binaries are incompatible!

Solution 1: Software-Based Approach

- Build new compiler based on modified ISE
- \Rightarrow Re-compile applications, either once or always on-the-fly
 - Costly for backward-compatible processors

ArISE – Application of Modified ISE

Modified ISE \Rightarrow Old software binaries are incompatible!

Solution 1: Software-Based Approach

- Build new compiler based on modified ISE
- \Rightarrow Re-compile applications, either once or always on-the-fly
 - Costly for backward-compatible processors

Solution 2: Hardware-Based Approach

- Implement a mapper from old to modified ISE
 - e.g., Look-up-Table, logic-statements (if-else)
- \Rightarrow Low overhead: < 2 % area
 - Attention: Critical path needs to be avoided!

Outline

- - Heuristic: Simulated Annealing
 - Hierarchical Approach
 - Aging Estimation Flow
 - Application in a real system

Experimental Setup

- FabScalar microprocessor
 - 11 Stage pipeline
 - Out-of-order, 4-issue
 - 170k Gates (w/o memory)
 - max clock with our setup: 740 MHz
- TSMC 65nm HP CMOS library
- Synthesis: Synopsys Design Compiler
- Simulation: Cadence NC Verilog + SPEC2000
- Power Analysis: Synopsys PrimeTime
- Temperature Analysis: HotSpot

Results – Lifetime

Recall: Predecode and Decode stage are sensitive to ISE

Lifetime-Results:

	Standard ISE			Best ISE		
Stage	Delay [ns]	Delay [ns]	MTTF	Delay [ns]	Delay [ns]	MTTF
	(0y)	(3y)	[years]	(0y)	(3y)	[years]
Predecode	1.35	1.48	3.0	1.35	1.46	5.8
Decode	1.34	1.43	15.9	1.34	1.42	19.1
Overall	1 25	1 / 9	3.0	1.25	1 46	5.8
Overall	1.55	1.40	3.0	1.55	1.40	+1.93x

Best ISE was obtained with hierarchical optimization flow

- Branch instructions are critical \Rightarrow Most important instruction group
- 16 iterations to find best encoding for branch group (exhaustive!)
- 25 iterations for instructions inside this group (< 100 min.)</p>

Results – Area & Power

Results – Area & Power

F. Oboril, M. Tahoori - ArISE: Aging-Aware Instruction Set Encoding for Lifetime Improvement

Results – Area & Power

F. Oboril, M. Tahoori - ArISE: Aging-Aware Instruction Set Encoding for Lifetime Improvement

Results – Comparison with Related Work

- Recall: [DeBole2009] proposed to periodically invert opcodes
- Evaluation for Predecode stage

	Our Technique	Periodica	al Inversior	I [DeBole2009]
Our recririque		never	always	every 10 ³ cyc
Δ -Delay @ 3y	8.1 %	9.1 %	9.0%	9.1 %
MTTF	5.8 years	4.0 years	4.1 years	4 years

- Periodical opcode inversion balances signal probabilities ≈ 0.5
- Instead: Our techniques optimizes signal probabilities for aging-critical gates as much as possible
 - $\rightarrow~{\rm e.g.}$ high signal probability is favorable for NBTI

Outline

Preliminaries

Motivation

- 3 Related Work
- 4 ArISE: Aging-Aware Instruction Set Encoding
 - Heuristic: Simulated Annealing
 - Hierarchical Approach
 - Aging Estimation Flow
 - Application in a real system

5 Results

Conclusion

Conclusion

Reliability is a major design constraint at nanoscale

- $\rightarrow\,$ Accelerated transistor aging has to be considered through out the entire design phase
- Most (micro)-architectural aging mitigation techniques focus on execution stage
 - ightarrow But also decoding stages can become critical
- Aging-Aware Instruction Set Encoding increases lifetime of decoding stages with no impact on performance

Thank you!