
Edit Distance Based Instruction Merging Technique 
to Improve Flexibility of Custom Instructions 

Toward Flexible Accelerator Design 
Hui Huang*, Taemin Kim** and Yatin Hoskote** 

UCLA* and Intel** 



Outline 

• Introduction 

• Related Works 

• Hypotheses and Verification 

• Our Approach 

• Experimental Results 

• Conclusion 



Introduction 

• Flexible Accelerator 

• To respond ever decreasing time-to-market 

• To reduce NRE cost 

• Traditional ASIP 

• Flexibility through base instruction-set 

• Performance through custom instructions 

• Our Proposal 

• Make custom instructions more flexible 



Contributions 

• Analyzed how similar applications in the same domain 
are one another 

• Used edit distance as a flexibility metric 

• Proposed an algorithm to make custom instructions 
flexible 

 



Related Works 

• Adding Redundancy Randomly 

• Interconnect, Functional Unit and Storage 

• Loop Accelerator[1] 

• Global Bus, Register File and ALU without guidance 

• Flexible CGRA[2] 

• Decompose a computational pattern (CP) into a smaller one and 
then add redundant interconnects to support more CPs 



Hypotheses 

• Significant Similarity in the Same Domain* 

• Exactly same computational patterns (CPs) (H1) 

• Small difference (H2) 

• Coverage increases for one app → Same for another in the same 
domain (H3) 

 

*Domain : Application functionality level terminology (e.g. audio, image, cryptography) 



Verification 

• Methodology 

• Define a current application (CA) and a future application (FA) 

• Generate custom instructions (CIs) for CA and FA separately. 
(CICA and CIFA) 

• Exact : Compare CICA to CIFA to see the difference (H1 and H2) 

• Exact+ : When |CICA| increases, see how many elements of CIFA 
are same as those of CICA (H3) 



Verification (Cont’d) 



Verification Result 



Our Approach 

• Objective 

• Maximize the number of computational patterns (CPs) that custom instructions 
(CIs) can support 

• Constraint 

• The number of custom instructions 

• How to support multiple CPs with a single CI 

• Allow small difference among CPs 

• Use Edit Distance as a difference metric 

• Relax the constraint of CP Merging step 

• Merge similar CPs into a single CI 

 



Flow 

Edit Distance 



Experimental Setup 



Experimental Results 

0

10

20

30

40

50

60

70

80

90

lame-mad lame-mp3 mad-lame mad-mp3 mp3-lame mp3-mad Avg

C
o

ve
ra

g
e

 (
%

) 

(future, curr) 

Audio 

Exact

Merge

Ideal



0

10

20

30

40

50

60

70

C
o

ve
ra

g
e

 (
%

) 

Medical Imaging 

Exact

Merge

Ideal



0

20

40

60

80

100

120

co
ve

ra
g

e
 (

%
) 

Telecom 

Exact

Merge

Ideal



0

20

40

60

80

100

120

co
ve

ra
g

e
 (

%
) 

Security 

Exact

Merge

Ideal



Experimental Results (Cont’d) 



Conclusion 

• Flexible Custom Instruction 

• Hypotheses on similarity of application in the same domain 

• Edit distance based instruction merging 

• Support future apps by supporting as many CPs of current apps as 
possible 

• Up to 7X flexibility improvement with 23% latency 
increase on average 



References 

• [1] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke, 
“Bridging the computation gap between 
programmable processors and hardwired 
accelerators,” HPCA 2009 

• [2] M. Stojilovic, D. Novo, L. Saranovac, P. Brisk, and P. 
Ienne, “Selective fexibility: Creating domain-specic 
reconfigurable arrays,” IEEE TCAD May 2013 

 

 



Backup 



Coverage w.r.t Edit Distance 

0

10

20

30

40

50

60

70

80

90

100

Security Telecom Audio MI

C
o

ve
ra

g
e

 (%
) 

ed = 2 ed = 5



Latency Degradation 
w.r.t Edit Distance 

0

10

20

30

40

50

60

70

80

90

100

Security Telecom Audio MI

la
te

n
cy

 d
e

g
ra

d
a

ti
o

n
 (

%
) 

ed = 2 ed = 5


