Edit Distance Based Instruction Merging Technique to Improve Flexibility of Custom Instructions Toward Flexible Accelerator Design Hui Huang*, Taemin Kim** and Yatin Hoskote** UCLA* and Intel**

Outline

- Introduction
- Related Works
- Hypotheses and Verification
- Our Approach
- Experimental Results
- Conclusion

Introduction

Flexible Accelerator

- To respond ever decreasing time-to-market
- To reduce NRE cost
- Traditional ASIP
 - Flexibility through base instruction-set
 - Performance through custom instructions
- Our Proposal
 - Make custom instructions more flexible

Contributions

- Analyzed how similar applications in the same domain are one another
- Used *edit distance* as a flexibility metric
- Proposed an algorithm to make custom instructions flexible

Related Works

Adding Redundancy Randomly

- Interconnect, Functional Unit and Storage
- Loop Accelerator^[1]
 - Global Bus, Register File and ALU without guidance
- Flexible CGRA^[2]
 - Decompose a computational pattern (CP) into a smaller one and then add redundant interconnects to support more CPs

Hypotheses

Significant Similarity in the Same Domain*

- Exactly same computational patterns (CPs) (H1)
- Small difference (H2)
- Coverage increases for one app → Same for another in the same domain (H3)

*Domain : Application functionality level terminology (e.g. audio, image, cryptography)

Verification

Methodology

- Define a current application (CA) and a future application (FA)
- Generate custom instructions (CIs) for CA and FA separately. (CICA and CIFA)
- **Exact** : Compare CICA to CIFA to see the difference (H1 and H2)
- Exact+ : When |CICA| increases, see how many elements of CIFA are same as those of CICA (H3)

Verification (Cont'd)

Domain	Application	Notes
Audio	mp3	Industrial mp3 decoder
	lame	Open-source mp3 encoder
	mad	Open-source mp3 decoder
Security	sha	Secure hash algorithm
	rijndael	Block cipher with 128-,192-,256-bit keys and blocks
	pgp	Pretty Good Privacy public key encryption algorithm
	blowfish	Symmetric block cipher with variable length key
Telecom	crc32	32-bit cyclic redundancy check
	gsm	GSM encoder/decoder
	adpcm	ADPCM encoder/decoder
Medical Imaging	denoise	Image denoise algorithm
	segmentation	Image segmentation algorithm
	registration	Image registration algorithm

Verification Result

Our Approach

Objective

- Maximize the number of computational patterns (CPs) that custom instructions (Cls) can support
- Constraint
 - The number of custom instructions
- How to support multiple CPs with a single CI
 - Allow small difference among CPs
 - Use *Edit Distance* as a difference metric
 - Relax the constraint of <u>CP Merging</u> step
 - Merge <u>similar</u> CPs into a single CI

Flow

Experimental Setup

Experimental Results

Audio

Telecom

Security

Experimental Results (Cont'd)

Conclusion

Flexible Custom Instruction

- Hypotheses on similarity of application in the same domain
- Edit distance based instruction merging
 - Support future apps by supporting as many CPs of current apps as possible
- Up to 7X flexibility improvement with 23% latency increase on average

References

- [1] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke, "Bridging the computation gap between programmable processors and hardwired accelerators," HPCA 2009
- [2] M. Stojilovic, D. Novo, L. Saranovac, P. Brisk, and P. Ienne, "Selective fexibility: Creating domain-specic reconfigurable arrays," IEEE TCAD May 2013

Backup

Coverage w.r.t Edit Distance

Latency Degradation w.r.t Edit Distance

