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1. Introduction 

 1.1 Circuit Simulation 

 

 Circuit simulation is to use mathematical models to 

predict the behavior of an electronic circuit. 
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Ordinary differential 

equations (ODEs) 



1. Introduction 

 1.2 Matrix Exponential Method (MEXP) 
 The numerical system to be solved in transient circuit analysis is a set of 

differential algebraic equations (DAE) 
 

𝐶𝑥 𝑡 = 𝐺𝑥 𝑡 + 𝐵𝑢 𝑡  
 

    𝐶, 𝐺 and 𝐵: susceptance, conductance and input matrix, respectively    

    𝑢(𝑡): collects the voltage and current sources 
 

 The essence of MEXP lies in transforming the above equation to an 

ODE  

𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝑏 𝑡  

 

 where 𝐴 = 𝐶−1𝐺 and 𝑏 𝑡 = 𝐶−1𝐵𝑢 𝑡 . 
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For simplicity , we will use 𝐴 to represent the 𝐴  in the following part. 
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 𝑥 𝑡 + ℎ = 𝑒𝐴ℎ𝑥 𝑡 +  𝑒𝐴 ℎ−𝜏 𝑏 𝑡 + 𝜏 𝑑𝜏
ℎ

0
 

𝑥 𝑡 + ℎ = 𝑒𝐴ℎ𝑥 𝑡 + 𝑒𝐴ℎ − 𝐼 𝐴−1𝑏 𝑡

+ 𝑒𝐴ℎ − 𝐴ℎ + 𝐼 𝐴−2
𝑏 𝑡 + ℎ − 𝑏(𝑡)

ℎ
 

𝑥 𝑡 + ℎ = [𝐼𝑛 0]𝑒
𝐴 ℎ 𝑥(𝑡)

𝑒2
 

𝐴 =
𝐴 𝑊
0 𝐽

, 𝐽 =
0 1
0 0

, 𝑒2 =
0
1
,𝑊 =

𝑏 𝑡 + ℎ − 𝑏(𝑡)

ℎ
     𝑏(𝑡)  

piece-wise linear (PWL) input 

transform 

 𝒆𝑨𝒉 Krylov subspace  



1. Introduction 

 1.2 Matrix Exponential Method (MEXP) 

 Main computation is  
 

𝑒𝐴ℎ𝑣 ≈ 𝛽𝑉𝑚𝑒
𝑇 𝑚ℎ𝑒1,                𝛽 = 𝑣 2 

 

 Krylov subspace:   𝐾𝑚 = 𝑠𝑝𝑎𝑛{𝑣, 𝐴𝑣, 𝐴2𝑣,…𝐴𝑚−1𝑣} 

 Arnoldi process:     𝐴𝑉𝑚 = 𝑉𝑚+1𝑇 𝑚 

 𝑉𝑚 : orthonormal basis of 𝐾𝑚 𝐴, 𝑣   

 𝑇 𝑚 : contains the orthonormalization coefficients 

 Error estimate:    𝑒𝑟𝑟 = 𝛽𝑡𝑚+1,𝑚 𝑒𝑚
𝑇 𝑒𝑇𝑚ℎ𝑒1   

 𝑡𝑚+1,𝑚 is the bottom right element of 𝑇 𝑚 

 

 

 
7 



Outline 

 Introduction 

 Circuit Simulation 

 Matrix Exponential Method(MEXP) 

 MEXP based on Extended Krylov Subspace 

 Problem of Stiff Circuit 

 Generalized Extended Krylov Subspace 

 Numerical Results 

 Conclusion 

8 



Outline 

 Introduction 

 Circuit Simulation 

 Matrix Exponential Method(MEXP) 

 MEXP based on Extended Krylov Subspace 

 Problem of Stiff Circuit 

 Generalized Extended Krylov Subspace 

 Numerical Results 

 Conclusion 

9 



2. MEXP based on Extended Krylov Subspace 

 2.1 Problem for Stiff Circuits 

 Stiff circuits: 

 Time constants differ by a large magnitude  

 Real parts of eigenvalues are well-separated  

 Shortcomings of Krylov subspace:  

 Tend to capture the dominant eigenvalues first  

 Tend to undersample of small magnitude eigenvalues 
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2. MEXP based on Extended Krylov Subspace 

 2.1 Problem for Stiff Circuits 

 Traditional extended Krylov subspace: 

 Merits: Capture the small magnitude eigenvalues 

because of the basis vectors from negative power of the 

matrix 

 Demerits: Computation of negative dimensions are more 

expensive than the computation of positive dimensions 

 Existing extended Krylov subspace: 
 

𝐾𝑙,𝑚 = 𝑠𝑝𝑎𝑛{𝐴−𝑙+1𝑣,…𝐴−1𝑣, 𝑣, 𝐴𝑣,…𝐴𝑚−1𝑣} 
 

𝐾𝑚,𝑚 = 𝑠𝑝𝑎𝑛{𝑣, 𝐴−1𝑣, 𝐴𝑣,…𝐴−𝑚+1𝑣, 𝐴𝑚−1𝑣} 
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2. MEXP based on Extended Krylov Subspace 

 2.1 Problem of the Stiff Circuit 

 Shortcoming of existing extended Krylov subspace: 

 Negative dimension 𝑙 need to be prespecified, subspace 

only augments in positive direction 
 

𝐾𝑙,𝑚 = 𝑠𝑝𝑎𝑛{𝐴−𝑙+1𝑣,…𝐴−1𝑣, 𝑣, 𝐴𝑣,…𝐴𝑚−1𝑣} 
 

 Equal number of negative and positive dimension may 

lead to waste of runtime 
 

𝐾𝑚,𝑚 = 𝑠𝑝𝑎𝑛{𝑣, 𝐴−1𝑣, 𝐴𝑣,…𝐴−𝑚+1𝑣, 𝐴𝑚−1𝑣} 
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2. MEXP based on Extended Krylov Subspace 

 2.2 Generalized Extended Krylov Subspace 

 Generalized extended Krylov subspace with  

    unequal number of positive/negative dimensions: 
 

𝐾𝑚,𝑘𝑚 = 𝑠𝑝𝑎𝑛{𝑣, 𝐴1𝑣, 𝐴2𝑣…𝐴𝑘𝑣, 𝐴−1𝑣, 
𝐴𝑘+1𝑣,…𝐴2𝑘𝑣, 𝐴−2𝑣,… , 𝐴𝑘𝑚−1𝑣, 𝐴−𝑚+1𝑣} 

 

 Arnoldi-type process:     𝐴𝑉𝑚 = 𝑉𝑚+2𝑇 𝑚 
 𝑇 𝑚 is a block Heisenberg matrix 

 Posterior error estimate: 

 𝑒𝑟𝑟 = 𝛽𝜏𝑚+1,𝑚 𝑒𝑚
𝑇 𝑒𝑇𝑚ℎ𝑒1   

 𝜏𝑚+1,𝑚is the 2-by-2 bottom right block of 𝑇 𝑚 
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2. MEXP based on Extended Krylov Subspace 

 How to compute 𝑇 𝑚 effectively and economically? 

 From the construction of the generalized extended Krylov 

subspace, we can get the following recursive relations: 
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2. MEXP based on Extended Krylov Subspace 

 Can we compute 𝑇 𝑚 without extra matrix-vector 

products of  𝑉𝑚+2
𝑇 𝐴𝑉𝑚? 
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3. Numerical Results 

 3.1 Improvement led by extended Krylov subspace 

 Example: RC ladder 

 Stiff circuit; Matrix order: 1000;   

 Compute 𝑒𝐴ℎ𝑣  by four Krylov subspaces  

 Krylov subspace with different negative-positive ratios 

k=0, 1, 2, 5 (dimension: 24) 
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3. Numerical Results 

 3.1 Improvement led by extended Krylov subspace 

 

 

 

 

 

 

 Extended Krylov subspace enjoys higher accuracy but 

increases runtime as a trade off 
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3. Numerical Results 
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3. Numerical Results 

 3.2 Performance of MEXP based on different Krylov 

subspace with real circuit examples 

 Example: three linear circuit examples 

 Run 100 time step with a constant step size  

 Allow the subspace dimension to vary dynamically to 

satisfy a tolerance of 10−6 
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3. Numerical Results 

 

 

 

 

 

 

 Standard Krylov subspace requires a much larger order of 

the subspace than extended Krylov subspace 

 The best breakdown of positive and negative dimensions in 

extended Krylov subspace is generally problem dependent 
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4. Conclusion 

 

 

 We have investigated the use of extended Krylov subspace to enhance 

the accuracy of numerical approximation of MEXP-vector product, which 

in turn benefits the MEXP-based transient circuit simulation.  

 

 We generalize the extended Krylov subspace to allow unequal 

positive/negative dimensions to maximize the overall performance in 

circuit simulation.  

 

 Numerical results have confirmed the efficiency of the proposed method. 
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Q & A 

Thank you!  
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