Efficient Matrix Exponential Method Based on Extended Krylov Subspace for Transient Simulation of Large-Scale Linear Circuits

> Wenhui Zhao University of Hong Kong

- Circuit Simulation
- Matrix Exponential Method(MEXP)
- MEXP based on Extended Krylov Subspace
 - Problem of Stiff Circuit
 - Generalized Extended Krylov Subspace
- Numerical Results
- Conclusion

- Circuit Simulation
- Matrix Exponential Method(MEXP)
- MEXP based on Extended Krylov Subspace
 - Problem of Stiff Circuit
 - Generalized Extended Krylov Subspace
- Numerical Results
- Conclusion

1. Introduction

1.1 Circuit Simulation

 Circuit simulation is to use mathematical models to predict the behavior of an electronic circuit.

1. Introduction

- 1.2 Matrix Exponential Method (MEXP)
- The numerical system to be solved in transient circuit analysis is a set of differential algebraic equations (DAE)

 $C\dot{x}(t) = Gx(t) + Bu(t)$

C, G and B: susceptance, conductance and input matrix, respectively u(t): collects the voltage and current sources

The essence of MEXP lies in transforming the above equation to an ODE

$$\dot{x}(t) = Ax(t) + b(t)$$

where $A = C^{-1}G$ and $b(t) = C^{-1}Bu(t)$.

$$x(t+h) = e^{Ah}x(t) + \int_{0}^{h} e^{A(h-\tau)}b(t+\tau)d\tau$$
piece-wise linear (PWL) input
$$x(t+h) = e^{Ah}x(t) + (e^{Ah} - I)A^{-1}b(t)$$

$$+ (e^{Ah} - (Ah+I))A^{-2}\frac{b(t+h) - b(t)}{h}$$
transform
$$x(t+h) = [I_{n} \ 0]e^{\bar{A}h} \begin{bmatrix} x(t) \\ e_{2} \end{bmatrix}$$

$$\tilde{A} = \begin{bmatrix} A & W \\ 0 & J \end{bmatrix}, J = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, e_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, W = \begin{bmatrix} b(t+h) - b(t) \\ h \end{bmatrix} \quad b(t) \end{bmatrix}$$

$$e^{Ah}$$
Krylov subspace

For simplicity, we will use A to represent the \tilde{A} in the following part.

- 1.2 Matrix Exponential Method (MEXP)
 - Main computation is

$$e^{Ah}v \approx \beta V_m e^{\hat{T}_m h} e_1, \qquad \beta = \|v\|_2$$

- Krylov subspace: $K_m = span\{v, Av, A^2v, \dots A^{m-1}v\}$
- Arnoldi process: $AV_m = V_{m+1}\hat{T}_m$
 - V_m : orthonormal basis of $K_m(A, v)$
 - \hat{T}_m : contains the orthonormalization coefficients
- Error estimate: $err = \beta t_{m+1,m} \| e_m^T e_m^{T_m h} e_1 \|$
 - $t_{m+1,m}$ is the bottom right element of \hat{T}_m

- Circuit Simulation
- Matrix Exponential Method(MEXP)
- MEXP based on Extended Krylov Subspace
 - Problem of Stiff Circuit
 - Generalized Extended Krylov Subspace
- Numerical Results
- Conclusion

- Circuit Simulation
- Matrix Exponential Method(MEXP)
- MEXP based on Extended Krylov Subspace
 - Problem of Stiff Circuit
 - Generalized Extended Krylov Subspace
- Numerical Results
- Conclusion

- 2.1 Problem for Stiff Circuits
- Stiff circuits:
 - Time constants differ by a large magnitude
 - Real parts of eigenvalues are well-separated
- Shortcomings of Krylov subspace:
 - Tend to capture the dominant eigenvalues first
 - Tend to undersample of small magnitude eigenvalues

- 2.1 Problem for Stiff Circuits
- Traditional extended Krylov subspace:
 - Merits: Capture the small magnitude eigenvalues because of the basis vectors from negative power of the matrix
 - Demerits: Computation of negative dimensions are more expensive than the computation of positive dimensions
- Existing extended Krylov subspace:

$$K_{l,m} = span\{A^{-l+1}v, \dots A^{-1}v, v, Av, \dots A^{m-1}v\}$$
$$K_{m,m} = span\{v, A^{-1}v, Av, \dots A^{-m+1}v, A^{m-1}v\}$$

- 2.1 Problem of the Stiff Circuit
- Shortcoming of existing extended Krylov subspace:
 - Negative dimension *l* need to be prespecified, subspace only augments in positive direction

$$K_{l,m} = span\{A^{-l+1}v, \dots A^{-1}v, v, Av, \dots A^{m-1}v\}$$

 Equal number of negative and positive dimension may lead to waste of runtime

$$K_{m,m} = span\{v, A^{-1}v, Av, \dots A^{-m+1}v, A^{m-1}v\}$$

- 2.2 Generalized Extended Krylov Subspace
 - Generalized extended Krylov subspace with *unequal* number of positive/negative dimensions:

$$K_{m,km} = span\{v, A^{1}v, A^{2}v \dots A^{k}v, A^{-1}v, A^{k+1}v, \dots A^{2k}v, A^{-2}v, \dots, A^{km-1}v, A^{-m+1}v\}$$

• Arnoldi-type process: $AV_m = V_{m+2}\hat{T}_m$

• \hat{T}_m is a block Heisenberg matrix

Posterior error estimate:

$$err = \beta \tau_{m+1,m} \left\| e_m^T e^{T_m h} e_1 \right\|$$

• $\tau_{m+1,m}$ is the 2-by-2 bottom right block of \hat{T}_m

- How to compute \hat{T}_m effectively and economically?
 - From the construction of the generalized extended Krylov subspace, we can get the following recursive relations:

If
$$n = 1$$
 or mod $(n, k + 1) = 2, ..., k$
 $h_{n+1,n}v_{n+1} = Av_n - V_nh_{1:n,n},$
If mod $(n, k + 1) = 0$
 $h_{n+2,n+1}v_{n+2} = Av_n - V_{n+1}h_{1:n+1,n+1},$
If $n > k$ and mod $(n, k + 1) = 1$
 $h_{n,n-1}v_n = A^{-1}v_{n-k-1} - V_{n-1}h_{1:n-1,n-1}.$

• Can we compute \hat{T}_m without extra matrix-vector products of $V_{m+2}^T A V_m$?

Proposition II.1 Let $\hat{T}_m = (t_{i,j}), i = 1, ..., 2m + 2, j = 1, ..., m$. Then

If
$$n = 1$$
 or mod $(n, k + 1) = 2, ..., k - 1$
 $t_{:,n} = h_{:,n}$
If mod $(n, k + 1) = 0$
 $t_{:,n} = h_{:,n+1}$
If $n > k$ and mod $(n, k + 1) = 1$
 $t_{:,n} = \frac{1}{h_{n,n-1}} \left(e_{n-k-1} - \begin{bmatrix} \hat{T}_{n-1}h_{1:n-1,n-1} \\ 0 \end{bmatrix} \right)$

- Circuit Simulation
- Matrix Exponential Method(MEXP)
- MEXP based on Extended Krylov Subspace
 - Problem of Stiff Circuit
 - Generalized Extended Krylov Subspace
- Numerical Results
- Conclusion

- Circuit Simulation
- Matrix Exponential Method(MEXP)
- MEXP based on Extended Krylov Subspace
 - Problem of Stiff Circuit
 - Generalized Extended Krylov Subspace
- Numerical Results
- Conclusion

- 3.1 Improvement led by extended Krylov subspace
- Example: RC ladder
 - Stiff circuit; Matrix order: 1000;
 - Compute $e^{Ah}v$ by four Krylov subspaces
 - Krylov subspace with different negative-positive ratios k=0, 1, 2, 5 (dimension: 24)

Fig. 1. RC ladder circuit

3.1 Improvement led by extended Krylov subspace

TABLE I

Error and runtime of different Krylov subspaces

Subspace	\mathcal{K}_{24}	$\mathcal{K}_{12,12}$	$\mathcal{K}_{8,16}$	$\mathcal{K}_{4,20}$
Error	4.2e-1	1.17e-6	3.6e-4	1.4e-2
Time (s)	0.09	0.37	0.17	0.11

 Extended Krylov subspace enjoys higher accuracy but increases runtime as a trade off

Fig. 2. Approximation of spectrum by standard Krylov subspace and extended Krylov subspace.

- 3.2 Performance of MEXP based on different Krylov subspace with real circuit examples
- Example: three linear circuit examples
 - Run 100 time step with a constant step size
 - Allow the subspace dimension to vary dynamically to satisfy a tolerance of 10⁻⁶

TABLE II SPECIFICATIONS OF TEST CIRCUITS

Circuits	Category	Nodes	Matrix size	Stiffness
C1	Power grid	39K	54K	medium
C2	Power grid	$164 \mathrm{K}$	$165 \mathrm{K}$	high
C3	Trans. lines	$5.6\mathrm{K}$	$8.8\mathrm{K}$	high

TABLE III PERFORMANCE OF MEXP BASED ON DIFFERENT KRYLOV SUBSPACE

Circuits	Step size (s)	Subspace dimensions			Total runtime (s)				
		k=0	1	3	4	k=0	1	3	4
C1	1e-12	(0,191)	(35, 35)	(29, 59)	(16, 67)	591.8	641.5	595.1	390.2
C2	1e-11	(0,308)	(15, 15)	(12, 37)	(12, 49)	5001.2	1459.1	1002.7	1256.3
C3	1e-12	(0,169)	(11, 11)	(8,25)	(8,33))	6364.6	1439.4	1730.6	2014.7

- Standard Krylov subspace requires a much larger order of the subspace than extended Krylov subspace
- The best breakdown of positive and negative dimensions in extended Krylov subspace is generally problem dependent

- Circuit Simulation
- Matrix Exponential Method(MEXP)
- MEXP based on Extended Krylov Subspace
 - Problem of Stiff Circuit
 - Generalized Extended Krylov Subspace
- Numerical Results
- Conclusion

- Circuit Simulation
- Matrix Exponential Method(MEXP)
- MEXP based on Extended Krylov Subspace
 - Problem of Stiff Circuit
 - Generalized Extended Krylov Subspace
- Numerical Results
- Conclusion

4. Conclusion

- We have investigated the use of extended Krylov subspace to enhance the accuracy of numerical approximation of MEXP-vector product, which in turn benefits the MEXP-based transient circuit simulation.
- We generalize the extended Krylov subspace to allow unequal positive/negative dimensions to maximize the overall performance in circuit simulation.
- Numerical results have confirmed the efficiency of the proposed method.

Thank you!