
Agile Frequency Scaling for Adaptive

Power Allocation in Many-core Systems

Powered by Renewable Energy Sources

Xiaohang Wang, Zhiming Li, Mei Yang, Yingtao
Jiang, Masoud Daneshtaleb and Terrence Mak

Guangzhou Institute of Advanced Technology, Chinese Academy of Science

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

Background

 Big data request for computation

resource

Background

 Blindly increasing the computation resource

explosive increase in power consumption and $$$

 Power hungry !

Background

 So how to reduce the power consumption and save

money ?

 1. renewable energy based computing

 2. power budgeting to improve the power efficiency

(GFLOPS/Watt)

Power budget
varies

Background

 Problem to solve and the challenges

 Optimize the performance over a given power budget.

 Challenge 1: large solution spaces.

 16-core, each can run at 4 frequency levels 416 choices

 Challenge 2: should be fast and prompt enough to track

the power budget variation

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

Related work

 Power allocation at core level [1], system level [2],

NoC [3], etc.

 Techniques: DVFS [2], power gating [4], etc.

 Shortcomings

 Heuristic-based, ad-hoc: sub-optimal

 Linear/ convex programming: High run time overhead

and might consume much power

 Poor scalability

[1] Li et al, HPCA’06
[2] Ma et al, PACT’12
[3] Sharifi et al, PACT’12
[4] Reda et al, MICRO 2012

So what we propose ?

 A dynamic programming network (DPN) based

power allocation method

 Using a hardware circuit to solve the problem

 Globally optimal solutions

 Can allocate power for multiple applications

 Very fast (linear complexity) and low overhead (in terms

of both area and power consumption)

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

Models

• Suppose Q applications

• Power model

• Performance model

– Cycle = gcycle (f1, …, fNq)

– We find the ln() function is a good approximator

2

1 1

n n

i i i i i

i i

P C f V b f

1

ln
qN

i i

i

Cycle a f

Problem formulation

 Problem

 Can be converted to the knapsack problem by dropping

the ln notation

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

The proposed algorithm
Exhaustive approach

 The knapsack problem

W: 10
V: 2

W: 20
V: 6

W: 12
V: 3 W: 8

V: 2

Bag

Power consumption
execution time

…

root

Exponential !

Can we reduce the size?

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

OFF

ON

The proposed algorithm
Native approach

 Let’s try

root

ON

OFF

ON

OFF

ON

OFF

ON

OFF

Optimal Optimal

Sorry, I’m too

heavy to be in

the bag !

w1+w2+w3>W

Not Markovian!
Let’s convert it to be Markovian

The proposed algorithm
Type -1 DPN

 Dynamic programming network DPN(V, E)

 V: DP value V(vi,p) : the max value of assigning fi given a

power budget of p,

 E: each vertex at stage i is connected to at most m

vertices in the next stage i+1.

 An edge exists between two vertices, vi,p and vi+1,q if p – q

= for i lb 1 l m

 1

, 1,,
, oth

, if

erwise
q

l

i

i i

i p

lp qa b
C v v

The proposed algorithm
Type -1 DPN

• DPN architecture

n stages corresponds to the n tiles

0

P

...

s d

0

P

...

1
1

a

0

P

...

f1
fn

Stage 1 Stage n

...

0

P

...

...

...

...

1
ma

1

na

n
ma

P vertices in each stage

=

+

+

From vi,j+1

∀k, an edge exists

between vi,j and vi+1,k

...

...

Vertex vi,j

Bypass

The proposed algorithm
Type -1 DPN

• DPN traversal

 Each node selects an output edge with

, , 1, ,(,) max{ (,) (,), (,)}i p i p i q i p

q
V v d C v d V v d V v d

The proposed algorithm
Type -1 DPN

 An example

2

4

6

8

10

f1 f2 f3

s

0

d

Problem : P= f1+f2+2f3≤ 10

fi ∈{2, 4}

12

84

2

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

0

12

6

6

6
6

8

8

8

4

4

4

4

4

4

4

4

2

2

2

2

fi =2 fi =4

max: Perf= f1+2f2+3f3

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

Evaluation

 Setup

 8x8 many-core

 Compare with

 PGCapping: freq scaling+PG[1]

 PEPON: freq scaling of cores and LLC[2]

 DPPC: freq scaling using linear programming [3]

[1] Ma et al, PACT’12
[2] Sharifi et al, PACT’12
[3] Ma et al, IEEE TC’ 2013

Number of processors 64
Fetch/Decode/Commit

size
4 / 4 / 4

ROB size 64

L1 D cache (private) 16KB, 2-way, 32B line, 2 cycles, 2
ports, dual tags

L1 I cache (private) 32KB, 2-way, 64B line, 2 cycles

L2 cache (shared) 64KB slice/node, 64B line, 6 cycles, 2
ports

Frequencies available 1GHz, 800MHz, 500MHz, 330MHz

On-chip network parameters

NoC flit size 72-bit

Data packet size 5 flits

Meta packet size 1 flit

NoC latency router: 2 cycles, link: 1 cycle

Number of VC in NoC 4

NoC buffer size 5x12 flits

Evaluation

 Performance comparison

 Reduces 26 %, 20%, 30 % execution time over

PGCapping, PEPON, DPPC given power

budget = 90W

Evaluation

• Run time adaptiveness to power budget variation

– Energy loss: (input power budget – power consumption)

integrated over time

Energy

loss

– The other three have high run time overhead and cannot
match the rapid change in power budget

Evaluation

 Cost analysis

 Area and power consumption of the DPN is 0.84 % and

0.27 % of the network-on-chip.

 Running time: 2n cycles, where n is the network size

 For a 64-core system, it’s 128 cycles.

 Other approaches: 1M or more cycles

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

Conclusion

 The power allocation problem is formulated as a

constraint optimization problem

 Dynamic programming is used to solve the problem.

A HW circuit is used to accelerate the computation,

with linear time complexity

 It can achieve better performance (lower execution)

time over a power budget

 It has low running time and area overhead

Backup slides

 Hmm, what’s the type -2 DPN?

 Do I get more time ?

Conclusion
Extensions

 Clock gating instead of frequency scaling

(submitted to DAC)

 Use auction models and support switching off to

further reduce power consumption (accepted by

DATE)

 Optimal power allocation and path selection for

NoC

Type -2 DPN

 The shortcoming of the type-1 DPN

 Storage O(NP), P is the power budget

 What if P = 100 Watt?

 Can we reduce the storage to O(NM), M is the allowable

frequency levels #?

Type -2 DPN

 How ?

 Pass 1: an optimal path w.r.t. the power consumption

 Pass 2: an optimal path w.r.t. the performance (value)

root

ON

OFF

ON

OFF

ON

OFF

ON

OFF

Type -2 DPN

• DPN:

 V: vi,j: a tile i with frequency set to be j.

 E: each edge connects two vertices vi,j and vi+1,l in stage

i+1

• Pass 1: additional DP value J(vi,j) : the optimal cost-to-go

function w.r.t. power consumption from stage S to i.

Forward traversing

root

ON

OFF

ON

OFF

ON

OFF

ON

OFF

J(v3,0)

1 2 3 4

J(v3,0): the optimal cost of power from stage 0 to 3

J(v3,1)

Forward

Type -2 DPN

• Pass 2: an optimal path w.r.t. the performance (value)

 V(vi,j): the optimal performance from stage N back to i

 g(vi,j): the optimal power cost from stage N back to i

 Constraint: , bi fi : the power

consumption of tile i

• Select the optimal edge among those that confirms to

the constraint

root

ON

OFF

ON

OFF

ON

OFF

ON

OFF

J(v3,0)

1 2 3 4

V(v3,0): the optimal performance from stage 5 to 3

g(v3,0) : the optimal power cost from stage 5 to 3

J(v3,1)

Backward

, ,() ()i j i i i jJ v b f g v P

Type -2 DPN

 What is the trick ?

 Represent the power

constraint of the full path

from S to D

S

ON

OFF

ON

OFF

ON

OFF

ON

OFF

J(v3,0)

1 2 4

g(v3,0) : the optimal cost of power from stage

5 to 3

J(v3,1)

J(v3,0): the optimal cost of power from

stage 0 to 3

b3 f3

The cost of power of the path from S to D thru v3,0 should be less than the total power budget P

 J(v3,0) +b3 f3 + g(v3,0) ≤P

D

Type -2 DPN

 What’s the trick ?
 Two passes, the first pass finds the optimal power cost from

stage S up to stage i, J(),

 In the second pass, backward, finds the optimal power cost from
stage D back to i, g()

 So, J() + power cost of i + g() = the power cost of the full path
from S to D thru i.

 Now, we can find the optimal performance paths among the
paths that confine to the above constraint.

S D

Type -2 DPN

 In general, if there are Q sets of constraints,

 Q forward passes with Jq(vi,j) (in parallel)

 A backward pass, with gq(vi,j)

 Even constraints of higher order, e.g., bi fi
2, ci fi

3

 0≤ q ≤Q

1

N

i i

i

z f Z

…
. Q constraints

Type -2 DPN

 An application
 Optimal decision for both router power allocation (by

frequency scaling or ON/OFF) AND routing path

selection simultaneously

S

ON

OFF

ON

OFF

D

S D
Given a power budget,
allocate to the routers

optimally AND find the

optimal path

ON

OFF

