POLITECNICO DI MILANO

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Variation-Aware Voltage Island Formation for Power Efficient Near Threshold Manycore Architectures ASP-DAC 2014

Stamelakos Ioannis, Sotirios Xydis, Gianluca Palermo, Cristina Silvano Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria **Presenter: ioannis.stamelakos@polimi.it**

Outline

- Motivation
- Problem Specification
- Proposed Solution/Framework
- Experimental Setup
- Experimental Results
- Conclusion

The Dark Silicon Era

Dark Silicon:

The percentage of transistors/ circuit that is switched off ("dark") due to the limited power budget

Vdd aggressively tuned close to the Vth value of the transistors

Lower frequency but larger number of cores available

 Promising energy savings (10x) while sustaining performance through parallelization

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Performance Degradation @ NTC

Limited maximum achievable clock frequency

Vdd-Vth difference reduction imposes a significant performance degradation

Open Issue: How to sustain performance when exploiting higher task parallelism at lower clock frequencies under process variability ?

The Variability Problem

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Variability @ NTC

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Target Architecture

Abstract view of tile based many-core architecture

Vth Variability Map 128 Cores

8-core Cluster

.20 .22 .24 .26 \NO

- SFMV(Single Frequency Multiple Voltages) Approach:
 One chip-wide frequency but many voltage domains (Voltage Islands)
- Each VI can include a certain number of cores and the Vdd can be tuned in a custom way

 Adjust Vdd according to the underlying variability in order to reach the desired frequency that sustains the application performance

Proposed Framework (I)

STC Regime: Application & Architecture Characterization

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Experimental Setup

Splash-2 Benchmark Suite run in Sniner sim

Speedup:	ideal	good	limited
ی م	radiosity	barnes	raytrace
С Д		water-nsq	water-sp

- + an average case workload water-sp aver
- Variability maps: VARIUS-NTV Karpuzcu et al., DSN' 12

17 single

snipe

Architecture and Floorplan

A. Tile based many-core architecture

R Floornlan: 128 cores

Vth Variability Map 128 Cores

Tile ₁₁	Tile ₁₂	Tile ₁₃	Tile ₁₄	14 -	Core P\$															
						L	L\$		LL\$			LL\$				LL\$				
Tilea, Tilea	Tileaa	Tile		Р\$	P\$	Р\$	P\$	Р\$	Р\$											
			24		Core															
					Core															
Tile ₃₁	Tile ₃₂	Tile ₃₃	Tile ₃₄	10 -	P\$															
				ArchFP*		L				L	->			L				L		
Tile ₄₁	Tile ₄₂	Tile	Tile	8	P\$															
	43	44		Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	
				Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	
Tile ₅₁	Tile ₅₂	Tile ₅₃	Tile ₅₄	6	P\$															
					LL\$		LL\$				LL\$				LL\$					
Tile	Tile	Tile	Tile		P\$	Р\$														
		04	4 -	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	Core	
		PPPP	PPPP		Core															
Tile ₇₁	Tile ₇₂			1111.2-	P\$															
					LL\$			LL\$			LL\$				LL\$					
	Tilo	LLŞ	LLŞ		Р\$	P\$	P\$	Р\$	P\$	Р\$	Р\$	P\$	P\$	P\$	P\$	P\$	Р\$	Р\$	P\$	P\$
111081	111e ₈₂	P P P P	P P P P	° ° ° ° 1 o <mark></mark>	Core															
				0			5			10			IV.			20				
	24x16 grid																			
					*	Fa	us	t e	et a	al.	, V	′LS	1-3	So	C	12	20			

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Power Reduction @ NTC

Power Gain of Variability-aware technique w.r.t Overdesign

Impact of Voltage Island Granularity on Power Consumption

128s1

128s2

128s4

---X--

[M]

· · · ×

3.8

3.6

3.4

[M]

Power

[M]

Power

Impact of Voltage Island Granularity on Power Consumption

Impact of Voltage Regulator Resolution on power efficiency at NTC

Voltage Regulator Resolution

Power overhead: the normalized difference between the power consumed in the ideal case and the power with the specific value of voltage precision

The higher is the resolution the smaller is the overhead

Even the 12% can be tolerable for applications that exhibit ideal or good scaling

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITEC

POLITECNICO DI MILANO

Conclusions

 A variability-aware framework for exploring the power-efficiency of Near-Threshold Computing

Voltage island formation combined with the operation at the nearthreshold regime proposed as an effective technique for building power efficient many-core architectures while sustaining super threshold performance

Promising results shown, depending on both workload characteristics and the underlying architectural organization

- □ ~ 65% average power gain
 - ~ 15-35% extra savings for finest VI granularity
- ~ 2.5 -12% power degradation due to VR quantization

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

Backup Slides

Vdd Distribution at NT regime

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA POLITECNICO DI MILANO

The DIBL Effect

