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 Embedded system design concerns 
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 The Design Problem 

 Security- & Energy-aware Real-Time Application 

 System execution goal 

 Complete the App. with minimal energy 

 Satisfy the security and real-time requirements 

 NP-hard to find the best solution 

 The Method 

 Dynamic Programming based Approximate 

optimization framework 

Contributions 



4 

Outline 

 Motivational application 

 System model 

 Problem formulation 

 Approximation based Dynamic Programming 

 Experimental results 

 Conclusion 
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Motivational application 



 Architecture model 
 Mono-processor, Battery powered 

 

 Application model 
 A set of periodic security- & energy-aware tasks 

 Security risk constraint 

 Scheduling by classic method, e.g. RM/EDF 

 

 Task model 
 A mandatory and optional part (Security improve) 

 Task attributes: (𝐵𝐸𝑖 , 𝑃𝑖 , 𝐿𝑖 , 𝑆𝑖 , 𝑆𝑖
𝐷𝑀 , 𝑉𝑖 , 𝑆𝑅𝑖) 

 

System Model 
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Security Overhead Model 
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Measure energy & time of  security algorithms 

G
PIO

 

Fixed 

resistor

Samsung S3C2440 

@400MHz

64MB SDRAM

uC/OSII with Cryptlib v3.4

   SCB-68 

Connector

NI PXI-1042Q

 

LabVIEW program 

to acquire data

NI 6221
• A real embedded platform 

• NI instrument 

• LabVIEW based data acquisition 

• Nearly non-intrusive measurement 



Security Overhead Model 

8 

Measurement results 

 

 

 

 

 

Execution time of each task 

    𝐸𝑥𝑒𝑖= 𝐵𝐸𝑖+𝜃(𝑆𝑖) ∗ 𝐿𝑖 

Energy consumption of each task 

    𝐸𝑛𝑖= 𝑃𝑂𝑊 ∗ (𝐵𝐸𝑖+𝜃(𝑆𝑖) ∗ 𝐿𝑖) 

 

Energy/time ratio: 320 mJ/S 

POW (power)  



 Definition 
 Security risk (SR) is the product of security failure 

probability and consequence impact of security 
failure. 

              𝑆𝑅𝑖= 𝑃𝑟𝑜𝑖
𝑟𝑖𝑠𝑘 ∗ 𝑉𝑖 

 Failure probability 

 𝑃𝑟𝑜𝑖
𝑟𝑖𝑠𝑘 =  

0,     𝑖𝑓 𝑆𝑖 ≥ 𝑆𝑖
𝐷𝑀

1 − 𝑒−𝜆𝑖 𝑆
𝑖
𝐷𝑀−𝑆𝑖

 

 More reasonable than other linear security QoS 
definitions like ref. [8, 10] 

Security Risk Model of each task 
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 Original problem 
         Min   Energy =  

𝐻𝑃

𝑃𝑖
∗ 𝐸𝑛𝑖

𝑁
𝑖=1  

         S.T.   

 
𝐻𝑃

𝑃𝑖
∗ 𝑆𝑅𝑖

𝑁
𝑖=1 ≤ 𝑅𝐵

 (𝐵𝐸𝑖 + 𝜃(𝑆𝑖) ∗ 𝐿𝑖)/𝑃𝑖
𝑁
𝑖=1 ≤ 𝑈𝐵𝑥

𝑆𝑚𝑖𝑛 ≤ 𝑆𝑖 ≤ 𝑆𝑚𝑎𝑥

 

 

 

 Energy =  
𝐻𝑃

𝑃𝑖
∗ 𝐸𝑛𝑖

𝑁
𝑖=1    

                    = 𝐻𝑃 ∗ 𝑃𝑂𝑊 ∗ (𝐵𝐸𝑖 + 𝜃(𝑆𝑖) ∗ 𝐿𝑖)/𝑃𝑖

𝑁

𝑖=1

 

Problem formulation 

10 



 Reduced problem 
 

         Min    (𝐵𝐸𝑖 + 𝜃(𝑆𝑖) ∗ 𝐿𝑖)/𝑃𝑖
𝑁
𝑖=1  

         S.T.   

 
𝐻𝑃

𝑃𝑖
∗ 𝑆𝑅𝑖

𝑁
𝑖=1 ≤ 𝑅𝐵

 (𝐵𝐸𝑖 + 𝜃(𝑆𝑖) ∗ 𝐿𝑖)/𝑃𝑖
𝑁
𝑖=1 ≤ 𝑈𝐵𝑥

𝑆𝑚𝑖𝑛 ≤ 𝑆𝑖 ≤ 𝑆𝑚𝑎𝑥

 

 

 Min. Utilization 

 Risk constraint 

 Utilization constraint 

 Security level constraint  

 

Problem formulation 
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We don’t need to consider 

Energy dimension! 



 Markov dynamic programming procedure 

  

 Approximating policies and analysis 

 

 Round Nearest approximating algorithm 

 

 Low Time complexity  

 

Proposed Optimization Technique 

12 



 Multi-stage decision procedure 

 N-Stage (One task, one stage) 

 Decision variable: 𝑺𝒊 (sec level) 

 State definition: (𝞷𝒊𝒌, 𝜸𝒊𝒌, 𝑺𝒊𝒌) 

 

 

 

Markov decision-making procedure  
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Accumulated utilization ratio of first i tasks 

Accumulated risk of first i tasks 

Specific  level  for k-th state 

Min utilization state 

Best Solution: (1, 3, 2, …, 3) 



 Number of states increases exponentially!  How next? 

 Approximation of Knapsack problem 

 Scale risk into a series of discrete integers by ∆ 
 Replace states with same risk by lowest utilization one 

 States denoted by a 𝑁 ×𝑀 matrix, 𝑀 = 𝑅𝐵/∆  

Multi-stage decision-making procedure  
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 Round to Ceiling (RC) 
 

 

 Round to Floor (RF) 

 

 

 Round Randomly (RR) 

 

 

 Round to Nearest (RN) 

 

Approximating policies and analysis 
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RC(2.2) = 3  

Err = 0.8 

RF(2.8) = 2 

Err = 0.8 

RN(2.2) = 2 

RN(2.8) = 3 



 How to determine ∆, given 1 + 𝛽 ∗ 𝑅𝐵 approximation? 

 Overall Deviation for N tasks is: 

 𝑂𝐷𝑅𝐶 ≥ −𝑁∆ 

 𝑂𝐷𝑅𝐹 ≤ 𝑁∆ 

 −𝑁∆≤ 𝑂𝐷𝑅𝑅≤ 𝑁∆ 

 −𝑁∆/2 ≤ 𝑂𝐷𝑅𝑁≤ 𝑁∆/2 

 For 1 + 𝛽  approximation, |𝑂𝐷| ≤ 𝛽 ∙ 𝑅𝐵 

 For RC, RF, RR approach, ∆≤
𝛽∙𝑅𝐵

𝑁
 

 For RN, ∆≤
𝟐𝛽∙𝑅𝐵

𝑁
 

 

 

Approximating policies and analysis 
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• Max ∆ of RN is twice larger than RF, RC 

and RR! 

• Reduce the number of states by a half in 

decision-making procedure ! 



Round Nearest approximating algorithm 
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 Experiment setup 
 Two group simulations, each with three synthetic sets 

 Basic execution time of each task: 5~10 ms 

 Period: 300~500 ms 

 Confidential data size: 100~400 KB 

 Security demand: 6~8 

 Security impact/loss of each task: 5~10 $ 

 Security coefficient 𝜆 : 1~3  

 

 Compared algorithms 
 RRAA: Round Randomly approximating algorithm 

 RCAA [16]: Round to Ceiling approximating algorithm 

 GRDY: Assigned security level in greedy fashion 

 SEAS [8]: Gradually increase the security by small 
risk/energy ratio 

Experimental results 
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 𝑹𝑩 = 𝑴𝑰𝑹 + 𝜶 ∗ 𝑴𝑨𝑹 −𝑴𝑰𝑹 , 𝜷 = 𝟎. 𝟎𝟓 

Impacts of Risk Bound (RB) 
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RNAA saves 14.5%, 5.9%, 

4.3% of GRDY, RCAA, SERS 

RNAA satisfies the risk slack 

ratio and its complexity is half 

of RCAA, RRAA. 



 Given  𝑹𝑩 = 𝑴𝑰𝑹 + 𝟎. 𝟕 ∗ (𝑴𝑨𝑹 −𝑴𝑰𝑹) 

 

Impacts of Risk Slack Ratio (𝜷) 
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RNAA saves 19.3%, 16.3%, 

10% of GRDY, RCAA, SERS 

RNAA is the best among 

them, lowest energy with 

guaranteed little risk deviation! 



 A new scheduling optimization problem for security- 
and energy-critical real-time applications 
 Minimal  energy with real-time and risk constraints 

 Multi-dimensional knapsack problem (NP-hard) 

 

 Efficient techniques 
 Problem reduced (energy dimension) 

 Approximating dynamic programming 

 Half complexity of traditional approx. DP algorithms 

 

 Experiments show the good performance 

Conclusions 

21 



 

 

Thanks for your time! 

^_^ 

Q&A 
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