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Introduction

= Embedded system design concerns
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Contributions

= The Design Problem
= Security- & Energy-aware Real-Time Application

= System execution goal
« Complete the App. with minimal energy
« Satisfy the security and real-time requirements

= NP-hard to find the best solution

= The Method

= Dynamic Programming based Approximate
optimization framework



« Motivational application

« System model

« Problem formulation

» Approximation based Dynamic Programming
» Experimental results

« Conclusion



Motivational application
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System Model

s Architecture model
= Mono-processor, Battery powered

= Application model
= A set of periodic security- & energy-aware tasks
= Security risk constraint
= Scheduling by classic method, e.g. RM/EDF

= Task model
= A mandatory and optional part (Security improve)
= Task attributes: (BE;, P;, L;, S;, S”™, Vi, SR;)



Security Overhead Model

sMeasure energy & time of security algorithms

Samsung SsCZ2440
@400MHz
64MB SDRAM
uC/OSII with Cryptlib v3.4

LabVIEW program
—, o acquire data

— <+ Go,_ = ﬂ “ L1 B
* A real embedded platform |

NI Instrument

* LabVIEW based data acquisition

* Nearly non-intrusive measurement



Security Overhead Model

sMeasurement results

Ciphers time(ms/KB) | Energy(mJ/KB) | Sec. Level
RC4 0.0063 R

RC5 0.0125

BLOWFISH 0.0170 Energy/time ratio: 320 mJ/S
IDEA 0.0196

SKIPJACK 0.0217 POW (power)

3DES 0.0654 21.0914 6

=EXxecution time of each task

s FExe;= BE; +0(S;) * L;

=Energy consumption of each task
s En;= POW * (BE;+0(S;) * L;)



Security Risk Model of each task

s Definition

= Security risk (SR) is the product of security failure
probability and consequence Iimpact of security
failure.

. SR;= Prols¥ x ;

= Failure probability

. Prorisk — 0, if Si = SiDM
l 1 _ e_Ai(SiDM_Si)

= More reasonable than other linear security QoS
definitions like ref. [8, 10]



Problem formulation

= Original problem
Min Energy=21ivzl($)*5ni

( N (g) « SR; < RB
S.T. 9 §V=1(BEL' + H(Sl) * Li)/Pi < UBx
L Smin < Si < gmax

HP
= Energy = YN, (P_l) * En;

N
— HP « POW + Z(BEi +0(S;) * L)/ P;
i=1
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Problem formulation

= Reduced problem

Min YN . (BE; +6(S;) = L;)/P;

( N (ﬂ) « SR; < RB
ST VXN (BE; +6(5) * L;)/P; < UB,
\ gmin < g < gmax

= Min. Utilization

= Risk constraint

» Utilization cons'We don’t need to consider
= Security level ccEnergy dimension!
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Proposed Optimization Technique

= Markov dynamic programming procedure
= Approximating policies and analysis
= Round Nearest approximating algorithm

= Low Time complexity
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Markov decision-making procedure

= Multi-stage deci: Accumulated utilization ratio of first tasks

» State definition: (§;r, Vi Sik) B Elile for -th state

(015,21, H——  (0.17,1.8,2) 19, 1.6, 3)
(0.25. 3.9-1) : 1>
@4\@4&4& A\SA ———————— A
Min utilization state

(0.39, 5\4 2)

__________ ‘95_8_134_31 Best Solution: (1, 3, 2, ..., 3)
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Multi-stage decision-making procedure

= Number of states increases exponentially! HOW next?
= Approximation of Knapsack problem

= Scale risk into a series of discrete integers by A

= Replace states with same risk by lowest utilization one
= States denoted by a N X M matrix, M = [RB/A]

0 1 2 2o M

N (15710 50) (&2:72-52) (&a0> Y106 S0 )
7 (‘fgv?’z,vsm) (52,2>?'2,2>Szz) (§2M>},2M>SZM)
T (Gaey1s¥aran Sarrn) (Gvaz2s Yar29Sp2) . (Ca linn e
T (Spas¥ar1s On1) (Sras YarzsSna) oo | g s FaragsSaras)
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Approximating policies and analysis
= Round to Celling (RC)

RC(SR;) = {SRﬂ RC(2.2) = 3
2 A E a
m=0.8
= Round to Floor (RF)
RF(SR;) = {sz RF(2.8) =2
) Err=0.8
= Round Rancomly (RR)
5 | '1with probability py = & L
RERER = 1 = |with probability po = ( 1
= Round to Nearest (RN) RN(2.2) = 2

o _ JTERE1 S - |5
REN(SR;) =S5Ey =4 sp, if SR _ | SR;
A J? 1 A L A J

RN(2.8) = 3
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Approximating policies and analysis

= How to determine A, given (1 + ) * RB approximation?

= Overall Deviation for N tasks Is:
= ODRC > —NA
= ODRF < NA
= —NA< ODRR< NA
= —NA/2 < ODRN< NA/2
= For (1 + B) approximation, |OD| < - RB

R.DD

"+ Max A of RN Is twice larger than RF, RC
and RR!

* Reduce the number of states by a half in

decision-making procedure !
16



Round Nearest approximating algorithm

Algorithm 1 RN-based approximation algorithm

1: Step 1: Schedulability test
il | ol }V(HP/P ;)SR:(S™%*) > RB
or > ;1 xe(S™T)/ P > U B, then

3: Return. /#Given task set is not schedulable®/

4

5: Step 2: Initialization

6: Compute the grouping factor A = 28RB/N and M =—
[ RB/A]

7: Initialize state matrix €2y < a7 with each element €2; ; = (0, 0,0)

8: Initialize £); by calculate (&1,~v:,51) with each S; &
[Sﬂ‘c'z'-n’ Sn'nma.:c]

q-

10: Step 3: Update the state matrix in /NV-Stage decision procedure
11: for z = 2 to N do
12: while (52 —1,Yi—1, Si—1) % (0,0,0) in £2; 1 do

13: for S; = S™ 10 Sm‘” do

14: C‘alculate temporary state (&7, vi, S?)

15: if £, > UBx or v > RB then

16: Ignore this state and break /*Schedulability or security
violated*/

17: if state Qz 75 (5= 7 {) is not existed then

18: B o= (52, z,b ) /%Store new state*/

19: else lf P < & 5 m €2;.; then

20: Qi3 = (&5, ._") /*Keep state with smaller utiliza-
hnn */

L.

22: Step 4: Find the minimal energy consurnption solution

23: Find €2}, ; with minimal utilization ratio £3;

24: Obtain the final security assignment decision (S, Sz, --- ,Sn)
by backtracklng

25: Energy® = &5 « HP * POW /*The minimal energy™®/
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Experimental results

= Experiment setup
= Two group simulations, each with three synthetic sets
Basic execution time of each task: 5~10 ms
Period: 300~500 ms
Confidential data size: 100~400 KB
Security demand: 6~8
Security impact/loss of each task: 5~10 $
Security coefficient A : 1~3

= Compared algorithms
= RRAA: Round Randomly approximating algorithm
= RCAA [16]: Round to Ceiling approximating algorithm
= GRDY: Assigned security level in greedy fashion

= SEAS [8]. Gradually increase the security by small

risk/energy ratio
18



Impacts of Risk Bound (RB)

= RB = MIR + a x (MAR — MIR), = 0.05

|

0.85- Maximal *— RNAA
] . —o— RRAA
. 080+ Risk —a— RCAA
@ ' 0.02 -
8 0.75_. g —— GRDY
2 0.70- =
Q 065- 2 0004
o | o
S 0.60- N
Q l 0
N e
N 0554

RNAA satisfies the risk slack
W ratio and its complexity is half
of RCAA, RRAA.

RNAA saves 14.5%. 5.9%.

4.3% of GRDY, RCAA, SERS

04 05 06 07 08 09
Risk Bound o
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Impacts of Risk Slack Ratio (f)

= Given RB = MIR + 0.7 « (MAR — MIR)

0.70 0.10
' —s— RNAA
0.65 2 o RRAA
g T 0.06- ——RCAA
S - 004' —v— GRDY
50.60- 2 —«— SERS
o -§ 0.02-
5 & 1o
5 05 T 0.00-
) X l
N —— RNAA 2 -0.02-
© 0.50{|—— RRAA > '
E | ——rcma £ 00
S DN g 00 A

E RNAA Is the best among
them, lowest energy with

RNAA saves 19.3%, 16.3%,

10% of GRDY, RCAA, SERS
kel guaranteed little risk deviation!
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Conclusions

= A new scheduling optimization problem for security-
and energy-critical real-time applications

= Minimal energy with real-time and risk constraints
= Multi-dimensional knapsack problem (NP-hard)

= Efficient techniques
= Problem reduced (energy dimension)
= Approximating dynamic programming
= Half complexity of traditional approx. DP algorithms

= Experiments show the good performance

21



Thanks for your time!
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