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Network-on-Chips (NoCs) 

 With technology scaling down, more and more components 

can be integrated on a single chip. 
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 An efficient way to manage the communication of on-chip 

resources plays the key role in future system design.  



NoC design space exploration 

 A large design space needs to be explored for an optimal design 

 Task mapping, allocation, buffer sizing, routing algorithm etc. 

 Accurate and fast performance evaluation is required during the exploration      

-> analytical performance evaluation model 
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Introduction- queuing-theory-based 

analytical model 

 Queuing-theory-based delay estimation 

 Customer (packet) arrival process 

 System (server) service process 

 Number of servers 

 Service discipline (FCFS, Round-robin etc.) 

 System time and waiting time 
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Queuing-theory-based NoC latency model 

 Previous arts and motivation of this work 
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NoC 

latency 

model 

Previous NoC analytical models This work 

[VLSI 2007] [TCAD’12, 

  ICCAD’09] 

[TVLSI’13] [NoCs’11] 

Traffic model for the application 

Queue M/M/1 M/G/1/K G/G/1 M/M/m/K G/G/1/K 

Arrival Poisson Poisson General Poisson General 

Service Markov General General Markov General 

NoC architecture modeled 

Buffer Small 𝐾 packets 𝐵 flits Small 𝐵 flits 

PB ratio1 𝑚 (≫ 1) < 1 arbitrary 𝑚 (≫ 1) arbitrary 

Arbitration Round robin Round robin Fixed priority Round robin Round robin 

1 PB ratio is defined as the ratio of average packet size (𝑚 flits) to the buffer depth (𝐵 flits) 
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Input to the NoC latency model 

 The application has been scheduled and mapped onto the NoC. 

 A deterministic routing algorithm is used to avoid deadlock. 
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NoC end-to-end delay calculation 

 The end-to-end flow latency 𝑳𝒔,𝒅 of a specific flow 𝒇𝒔,𝒅 

consists of three parts:  𝐿𝑠,𝑑 = 𝑣𝑠 + 𝜂𝑠,𝑑 + ℎ𝑠,𝑑  

 The queuing time at the source 𝑣𝑠 

 The packet transfer time in the path 𝜂𝑠,𝑑 = 𝑚 + 1 +  𝜂𝑙𝑓𝑖
𝑑𝑓
𝑖=1

 

 The path acquisition time ℎ𝑠,𝑑 =  ℎ𝑙𝑓𝑖
𝑑𝑓
𝑖=1

 

 

 

 

9 

0 1 2

3 4 5

6 7 8

8

4

1

7

0

f0,8

v0

Local
(a) (b) 

5

l1

f

l2

f

l3

f

l4

f

l5

f (c) 

R1 l2

hl2

ηl2

R2

current flow contention flow

ql2

R1 l2

hl2

ηl2

R2

ql2

(d) 



Outline 

 Introduction  

 NoC Modeling for Performance Analysis 

 NoC end-to-end delay calculation 

 Link dependency analysis 

 GE-type traffic modeling 

 Wormhole router based NoC latency model 

 Experimental results 

 Simulation setup 

 Evaluation under synthetic traffic patterns 

 Evaluation under realistic benchmarks 

 Conclusion 

10 



Link dependency graph 

 Building the channel (link) dependency graph 
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Link dependency analysis 
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 Topological sort algorithm is applied on the obtained CDG to 

find out the proper order to analyze the queuing delays. 
A sample channel dependency graph 

Three 

parameters: 

𝜂, ℎ, 𝑠 

Source 

queuing 𝑣 
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Modeling the bursty traffic input 
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GE-type traffic modeling 

 The GE-type cumulative distribution function (cdf) of inter-

arrival time is: 
𝐹 𝑡 = 𝑃 𝑋 ≤ 𝑡 = 1 − 𝜏𝑒−𝜏𝜆𝑡, 𝑡 ≥ 0 

Where the parameter 𝜏 =
2

1+𝐶2
 and 𝐶2 is the square coefficient of variation  

 In this work, we use the GE distribution to model the traffic input of 

each flow, which is characterized by two parameters: 

 𝜆 : the  average packet arrival rate (packets/cycle) 

 𝐶:  the coefficient of variation of this traffic flow, i.e.,  𝐶 =
𝜎

𝜆
, where 𝜎 is the 

standard derivation of the packet inter-arrival times. 

 Accordingly, the GE/G/1/K queuing model is used to analyze 

the channel waiting time by considering the traffic burstness. 
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Flit transfer time 𝜼 calculation 

 The flit transfer time 𝜼 of link 𝒍𝒂𝒃 is defined as the time taken 

for the header flit after being granted link access to reach the 

buffer front in link 𝒍𝒂𝒃 
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Illustration of path acquisition time 

 Service time in wormhole NoC to obtain 𝒉: 
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Path acquisition time 𝒉 calculation 

 Number of effective subsequent links of link 𝒍 with respect to the path 𝒑: 

𝛬𝑝 𝑙 =  

𝑚

𝐵
𝑟 𝑝, 𝑙

𝑖𝑓 𝑟 𝑝, 𝑙 >
𝑚

𝐵
𝑒𝑙𝑠𝑒𝑤𝑖𝑠𝑒

 

    where 𝑟(𝑝, 𝑙) is the function returns the number of remaining hops from link 𝑙 towards the 

destination of path 𝑝. 

 The service time of link 𝒍 with respect to the path 𝒑 is [1]: 

𝑠
𝑙𝑖
𝑓 =  

𝑚 𝑚 + 𝑥𝑙𝑖
𝑓
+ 2𝑥𝑙𝑖

𝑓
𝑚 /(𝑚 + 2𝑥𝑙𝑖

𝑓
)  𝑖𝑓 𝑥𝑙𝑖

𝑓
< 𝑚

𝑚 𝑚+ 𝑥𝑙𝑖
𝑓
+ 2 𝑥𝑙𝑖

𝑓
2
/(𝑚 + 2𝑥𝑙𝑖

𝑓
)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 The channel service time of link 𝒍 : 

𝑠 𝑙𝑎𝑏 =  (𝜆𝑓 × 𝑠𝑙𝑖
𝑓)/∀𝑓∈𝐹𝑙𝑎𝑏

 𝜆𝑓∀𝑓∈𝐹𝑙𝑎𝑏
  

       

19 

𝐶𝑠𝑙𝑎𝑏
2 =

𝑠𝑙𝑎𝑏
2

 𝑠 𝑙𝑎𝑏
2 − 1 = (

 𝜆𝑓 × 𝑠𝑙𝑖
𝑓
2

∀𝑓∈𝐹𝑙𝑎𝑏

 𝜆𝑓∀𝑓∈𝐹𝑙𝑎𝑏

)/ 𝑠 𝑙𝑎𝑏
2
− 1 

[1] P.-C. Hu, L. Kleinrock, An Analytical model for wormhole routing with finite size input  Buffers, 

15th International Telegraphic Congress, 1998 



GE/G/1/K queue based 𝒉 calculation 

 Diffusion approximation for the steady state distribution probability 𝑷𝒏 of the 

M/G/1/K queue with arrival rate 𝝀 and service rate 𝝁 : 

      𝑃𝑛 =  

𝑐 × 𝑝′𝑛  (0 ≤ 𝑛 ≤ 𝐾)

1 −
1−𝑐 1−

𝜆

𝜇

𝜆

𝜇

(𝑛 = 𝐾 + 1)
 

Where the normalization constant 𝑐 = (1 −
𝜆

𝜇
(1 −  𝑃𝑛))

−1𝐾
𝑗=0  and 𝑝′𝑛  is the steady 

state probability of M/G/1/∞ queue [2] 

 Applying Little’s formula to obtain the waiting time : ℎ𝑙
′ = ( 𝑖 × 𝑃𝑖)/

𝐾+1
𝑖=1 𝜆 

 Taking the arrival traffic burstiness in GE/G/1/K model by refining the results of 

M/G/1/K queue: 
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ℎ𝑙𝑎𝑏 =
(𝐶𝑠𝑙𝑎𝑏

2 +𝐶𝑎𝑙𝑎𝑏
2 )

(1+𝐶𝑠𝑙𝑎𝑏
2 )

ℎ′𝑙𝑎𝑏  

[2] M.C. Lai, et.al. An accurate and efficient performance analysis approach based on queuing 

model for Network on Chip. In Proceedings of ICCAD,2009 



Source queuing time 𝒗𝒔 

 The source queue is modeled as a GE/G/1/∞ system: 

𝑣𝑠 =
 𝑠 𝑙𝑠
2

1 +

   𝐶𝑎
2+𝜆𝑎 ×

 𝑠 𝑙𝑠 −𝑚
2

 𝑠 𝑙𝑠
1 − 𝜆𝑎 ×  𝑠 𝑙𝑠

−  𝑠 𝑙𝑠  

where the arrival process is characterized by (λa, Ca
2) in the GE type traffic 

model and the service time at source is represented as  𝑠 𝑙𝑠 . 
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Proposed NoC latency analysis flow 
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1: foreach 𝒍𝒂𝒃 ∈ 𝑮 

2:    (𝝀𝒍𝒂𝒃 , 𝑪𝒂𝒍𝒂𝒃
𝟐 )= traffic_model (𝑭𝒍𝒂𝒃)        

3:    𝜼𝒍𝒂𝒃= calculate_transfer_time(𝝀𝒍𝒂𝒃,𝒔𝒇𝒍𝒊𝒕
𝒍𝒂𝒃 ,𝒎, 𝑩)  

4:      foreach 𝒇 ∈ 𝑭𝒍𝒂𝒃  and 𝒍𝒊
𝒇
= 𝒍𝒂𝒃 

5:        𝒔𝒍𝒊
𝒇

= calculate_link_service_time ( )  

6:      end   

7:    ( 𝒔 𝒍𝒂𝒃 , 𝑪𝒔𝒍𝒂𝒃
𝟐 ) = service_time ( )   

8:   if 𝒂 ≠ 𝒃    // the links between the routers     

9:   𝒉𝒍𝒂𝒃 = GE_G_1_K_queue (𝝀𝒍𝒂𝒃 , 𝑪𝒂𝒍𝒂𝒃
𝟐 , 𝒔 𝒍𝒂𝒃 , 𝑪𝒍𝒂𝒃

𝟐 , 𝒌) 

10:   else     // the link is the source link 

11:    𝒗𝒂 = GE_G_1 _queue (𝝀𝒍𝒂𝒃 , 𝑪𝒂𝒍𝒂𝒃
𝟐 , 𝒔 𝒍𝒂𝒃 , 𝑪𝒔𝒍𝒂𝒃

𝟐 ) 

12:   endif 

13:endfor 

14: foreach 𝒇 ∈ 𝑭 

15:    𝑳𝒔,𝒅=calculate_flow_latency( )    

16: end          

 Link dependency 

analysis to obtain the 

link order 𝑮 

 For each link 𝒍𝒂𝒃 in 𝑮: 

 Calculate the flit transfer 

time 𝜂 

 Calculate the link service 

time 𝑠 

 Compute the path 

acquisition time ℎ  

 Calculate the source 

queuing time 𝑣 

  Form the latency for 

each flow in application 
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Simulation setup 

 The proposed analytical latency model is implemented in 

MATLAB and its accuracy is compared with Booksim simulator. 

 Each router takes two cycles to route a flit and the link traversal 

stage takes an additional one cycle. 

 Different buffer depth (𝑩 flits) and packet length (𝒎 flits) 
combinations are evaluated. 

 Both synthetic and real applications are adopted: 

 Random and shuffle traffic on 8 × 8 and 12 × 12 meshes 

 MMS (Multimedia system) 

 DVOPD (Video object plane decoder) 

 MPEG4 (MPEG decoder) 

 SPECweb99 applications 

24 



Evaluation under random traffic patterns 

 

 

 

 

 

 

 

The proposed latency model works for a variety of buffer depth 

and packet size combinations. 

For random traffic, about 5.2%-9.9% errors are introduced in 

predicting the network saturation point.  
25 

0 0.01 0.02 0.03 0.04 0.05
0

100

200

300

400

500

600

700

800

Packet injection rate (packets/cycle)

L
a

te
n

c
y

 (
c

y
c

le
s

)

 

 

Simulation (B=3,m=14)

Proposed model (B=3,m=14)

Simulation (B=4,m=9)

Proposed model (B=4,m=9)

Simulation(B=9,m=4)

Proposed model (B=9,m=4)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

100

200

300

400

500

600

700

800

Packet injection rate (packets/cycle)

L
a

te
n

c
y

 (
c

y
c

le
s

)

 

 

Simulation (B=3,m=14)

Proposed model (B=3,m=14)

Simulation (B=4,m=9)

Proposed model (B=4,m=9)

Simulation(B=9,m=4)

Proposed model (B=9,m=4)

8 × 8 𝑚𝑒𝑠ℎ, 𝑅𝑎𝑛𝑑𝑜𝑚 12 × 12 𝑚𝑒𝑠ℎ, 𝑅𝑎𝑛𝑑𝑜𝑚 



Evaluation under shuffle traffic patterns 

 

 

 

 

 

 

 

For the traffic patterns such as shuffle, a little larger error 

(10.8%-13%) is introduced due to the uneven traffic arrival 

rates across the channels. 

Overall, the analytical model achieves 70X speedup over the 

simulations for both traffic patterns. 
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Evaluation under burst and real traffic 

 Comparison of Poisson and GE-type traffic injection: 

 

 

 

 

 

 Evaluation under real application traces: 
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Conclusion 

 In this work, we propose a new  NoC latency model which 

generalizes the previous work by modeling: 

 The arrival traffic burstiness 

 The general service time distribution 

 The finite buffer depth and arbitrary packet length combinations 

 A link dependency analysis technique is proposed to 

determine the order of applying queuing analysis 

 The accuracy of the model is demonstrated using both the 

synthetic traffic and real applications. 

 A 70X speedup over simulation is achieved with less than 13% 

error in the proposed analytical model, which benefit the NoC 

synthesis process.  
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