

A Comprehensive and Accurate Latency Model for Network-on-Chip Performance Analysis

Zhiliang Qian¹, Da-Cheng Juan², Paul Bogdan³, Chi-Ying Tsui¹, Diana Marculescu² and Radu Marculescu²

¹The Hong Kong University of Science and Technology, Hong Kong ²Carnegie Mellon University, Pittsburgh, U.S.A ³University of Southern California, Los Angeles, U.S.A

IEEE/ACM ASP-DAC'14, 22 Jan., 2014, Singapore

Introduction

- NoC Modeling for Performance Analysis
 - NoC end-to-end delay calculation
 - Link dependency analysis
 - GE-type traffic modeling
 - Wormhole router based NoC latency model
- Experimental results
 - Simulation setup
 - Evaluation under synthetic traffic patterns
 - Evaluation under realistic benchmarks
- Conclusion

Network-on-Chips (NoCs)

With technology scaling down, more and more components can be integrated on a single chip.

An efficient way to manage the communication of on-chip resources plays the key role in future system design.

NoC design space exploration

A large design space needs to be explored for an optimal design

- > Task mapping, allocation, buffer sizing, routing algorithm etc.
- > Accurate and fast performance evaluation is required during the exploration
 - -> analytical performance evaluation model

Introduction- queuing-theory-based analytical model

Queuing-theory-based delay estimation

- Customer (packet) arrival process
- System (server) service process
- Number of servers
- > Service discipline (FCFS, Round-robin etc.)
- System time and waiting time

Queuing-theory-based NoC latency model

Previous arts and motivation of this work

NoC	Previous NoC analytical models				This work
latency model	[VLSI 2007]	[TCAD'12, ICCAD'09]	[TVLSI'13]	[NoCs'11]	
Traffic model for the application					
Queue	M/M/1	M/G/1/K	G/G/1	M/M/m/K	G/G/1/K
Arrival	Poisson	Poisson	General	Poisson	General
Service	Markov	General	General	Markov	General
NoC architecture modeled					
Buffer	Small	K packets	B flits	Small	B flits
PB ratio ¹	$m (\gg 1)$	< 1	arbitrary	$m (\gg 1)$	arbitrary
Arbitration	Round robin	Round robin	Fixed priority	Round robin	Round robin

¹ PB ratio is defined as the ratio of average packet size (m flits) to the buffer depth (B flits)

Introduction

NoC Modeling for Performance Analysis

NoC end-to-end delay calculation

- Link dependency analysis
- GE-type traffic modeling
- Wormhole router based NoC latency model
- Experimental results
 - Simulation setup
 - Evaluation under synthetic traffic patterns
 - Evaluation under realistic benchmarks
- Conclusion

Input to the NoC latency model

- The application has been scheduled and mapped onto the NoC.
- A deterministic routing algorithm is used to avoid deadlock.

Performance metrics: average latency $L = (\sum_{f \in F} \lambda_f \times L_f) / \sum_{f \in F} \lambda_f$

8

NoC end-to-end delay calculation

The end-to-end flow latency $L_{s,d}$ of a specific flow $f_{s,d}$ consists of three parts: $L_{s,d} = v_s + \eta_{s,d} + h_{s,d}$

 \succ The queuing time at the source v_s

> The packet transfer time in the path $\eta_{s,d} = (m+1) + \sum_{i=1}^{d_f} \eta_{l_i}^{f_i}$

> The path acquisition time $h_{s,d} = \sum_{i=1}^{d_f} h_{l_i}^{f_i}$

Introduction

NoC Modeling for Performance Analysis

NoC end-to-end delay calculation

Link dependency analysis

- GE-type traffic modeling
- Wormhole router based NoC latency model
- Experimental results
 - Simulation setup
 - Evaluation under synthetic traffic patterns
 - Evaluation under realistic benchmarks
- Conclusion

Link dependency graph

Building the channel (link) dependency graph Edge in the

Core Communication graph

NOC mesh

Channel Dependency Graph (CDG) of the application communication

Link dependency analysis

Topological sort algorithm is applied on the obtained CDG to find out the proper order to analyze the queuing delays.

A sample channel dependency graph

Introduction

NoC Modeling for Performance Analysis

- NoC end-to-end delay calculation
- Link dependency analysis

GE-type traffic modeling

- Wormhole router based NoC latency model
- Experimental results
 - Simulation setup
 - Evaluation under synthetic traffic patterns
 - Evaluation under realistic benchmarks
- Conclusion

Modeling the bursty traffic input

GE-type traffic modeling

The GE-type cumulative distribution function (cdf) of interarrival time is:

 $F(t) = P(X \le t) = 1 - \tau e^{-\tau \lambda t}, \qquad t \ge 0$

Where the parameter $\tau = \frac{2}{1+C^2}$ and C^2 is the square coefficient of variation

In this work, we use the GE distribution to model the traffic input of each flow, which is characterized by two parameters:

 $\succ \lambda$: the average packet arrival rate (packets/cycle)

> C: the coefficient of variation of this traffic flow, i.e., $C = \frac{\sigma}{\lambda}$, where σ is the standard derivation of the packet inter-arrival times.

Accordingly, the GE/G/1/K queuing model is used to analyze the channel waiting time by considering the traffic burstness.

Introduction

NoC Modeling for Performance Analysis

- NoC end-to-end delay calculation
- Link dependency analysis
- GE-type traffic modeling

Wormhole router based NoC latency model

Experimental results

- Simulation setup
- > Evaluation under synthetic traffic patterns
- Evaluation under realistic benchmarks

Conclusion

Flit transfer time η calculation

The flit transfer time η of link l_{ab} is defined as the time taken for the header flit after being granted link access to reach the buffer front in link l_{ab}

Illustration of path acquisition time

Service time in wormhole NoC to obtain *h*:

Waiting time W includes: 1) the link contention time H and 2) the time for the header flit to reach the buffer head Q

Service time S is bounded by the time where the header reaches the node that the accumulated buffer spaces between can hold the whole worm packet.

contention flow

Path acquisition time *h* calculation

Number of effective subsequent links of link *l* with respect to the path *p*:

$$\Lambda^{p}(l) = \begin{cases} \left\lfloor \frac{m}{B} \right\rfloor & if \ r(p,l) > \left\lfloor \frac{m}{B} \right\rfloor \\ r(p,l) & elsewise \end{cases}$$

where r(p, l) is the function returns the number of remaining hops from link *l* towards the destination of path *p*.

The service time of link *l* with respect to the path *p* is ^[1]:

$$s_{l_{i}^{f}} = \begin{cases} \left[m \left(m + x_{l_{i}}^{f} \right) + 2x_{l_{i}}^{f} m \right] / (m + 2x_{l_{i}}^{f}) & \text{if } x_{l_{i}}^{f} < m \\ \left[m \left(m + x_{l_{i}}^{f} \right) + 2 \left(x_{l_{i}}^{f} \right)^{2} \right] / (m + 2x_{l_{i}}^{f}) & \text{otherwise} \end{cases}$$

The channel service time of link *l* :

$$\bar{s}_{l_{ab}} = \sum_{\forall f \in F_{l_{ab}}} (\lambda_f \times s_{l_i^f}) / \sum_{\forall f \in F_{l_{ab}}} \lambda_f$$
$$C_{s_{l_{ab}}}^2 = \frac{\overline{s_{l_{ab}}^2}}{\left(\overline{s}_{l_{ab}}\right)^2} - 1 = \frac{\sum_{\forall f \in F_{l_{ab}}} \lambda_f \times s_{l_i^f}^2}{\sum_{\forall f \in F_{l_{ab}}} \lambda_f}) / \left(\bar{s}_{l_{ab}}\right)^2 - 1$$

[1] P.-C. Hu, L. Kleinrock, An Analytical model for wormhole routing with finite size input Buffers, 15th International Telegraphic Congress, 1998

GE/G/1/K queue based h calculation

Diffusion approximation for the steady state distribution probability P_n of the M/G/1/K queue with arrival rate λ and service rate μ :

$$P_n = \begin{cases} c \times p'_n & (0 \le n \le K) \\ 1 - \frac{1 - c\left(1 - \frac{\lambda}{\mu}\right)}{\frac{\lambda}{\mu}} & (n = K + 1) \end{cases}$$

Where the normalization constant $c = (1 - \frac{\lambda}{\mu} (1 - \sum_{j=0}^{K} P_n))^{-1}$ and p'_n is the steady state probability of M/G/1/ ∞ queue ^[2]

- Applying Little's formula to obtain the waiting time : $h_l' = (\sum_{i=1}^{K+1} i \times P_i) / \lambda$
- Taking the arrival traffic burstiness in GE/G/1/K model by refining the results of M/G/1/K queue:

$$h_{l_{ab}} = \frac{(C_{sl_{ab}}^2 + C_{al_{ab}}^2)}{(1 + C_{sl_{ab}}^2)} h'_{l_{ab}}$$

[2] M.C. Lai, et.al. An accurate and efficient performance analysis approach based on queuing model for Network on Chip. In *Proceedings of* ICCAD,2009

Source queuing time v_s

The source queue is modeled as a GE/G/1/ ∞ system:

$$v_{s} = \frac{\overline{s}_{l_{s}}}{2} \left(1 + \frac{C_{a}^{2} + \lambda_{a} \times \frac{(\overline{s}_{l_{s}} - m)^{2}}{\overline{s}_{l_{s}}}}{1 - \lambda_{a} \times \overline{s}_{l_{s}}} \right) - \overline{s}_{l_{s}}$$

where the arrival process is characterized by (λ_a, C_a^2) in the GE type traffic model and the service time at source is represented as \overline{s}_{l_s} .

Proposed NoC latency analysis flow

- Link dependency analysis to obtain the link order G
- For each link l_{ab} in G:
 - > Calculate the flit transfer time η
 - Calculate the link service time s
 - Compute the path acquisition time h
- Calculate the source queuing time v
- Form the latency for each flow in application

1: foreach $l_{ab} \in G$ $(\lambda_{l_{ab}}, C_{al_{ab}}^2) = traffic_model (F_{l_{ab}})$ 2: $\eta_{l_{ab}} = calculate_transfer_time(\lambda_{l_{ab}}, s_{flit}^{l_{ab}}, m, B)$ 3: foreach $f \in F_{l_{ab}}$ and $l_i^f = l_{ab}$ **4**: 5: s_{L}^{f} = calculate_link_service_time () 6: end $(\overline{s}_{l_{ab}}, C_{s_{l_{ab}}}^2) = \text{service}_{time}()$ 7: if $a \neq b$ // the links between the routers 8: **9:** $h_{l_{ab}} = GE_G_1_K_queue(\lambda_{l_{ab}}, C_{a_{l_{ab}}}^2, \bar{s}_{l_{ab}}, C_{l_{ab}}^2, k)$ // the link is the source link 10. else $v_a = GE_G_1$ _queue $(\lambda_{l_{ab}}, C_{al_{ab}}^2, \overline{s}_{l_{ab}}, C_{sl_{ab}}^2)$ 11: 12: endif 13:endfor 14: foreach $f \in F$ **15:** *L_{s.d}=calculate_flow_latency()* 16: end

Introduction

NoC Modeling for Performance Analysis

- NoC end-to-end delay calculation
- Link dependency analysis
- GE-type traffic modeling
- Wormhole router based NoC latency model

Experimental results

Simulation setup

- Evaluation under synthetic traffic patterns
- Evaluation under realistic benchmarks

Conclusion

Simulation setup

- The proposed analytical latency model is implemented in MATLAB and its accuracy is compared with Booksim simulator.
- Each router takes two cycles to route a flit and the link traversal stage takes an additional one cycle.
- Different buffer depth (*B flits*) and packet length (*m flits*) combinations are evaluated.
- Both synthetic and real applications are adopted:
 - \succ Random and shuffle traffic on 8 \times 8 and 12 \times 12 meshes
 - MMS (Multimedia system)
 - DVOPD (Video object plane decoder)
 - MPEG4 (MPEG decoder)
 - SPECweb99 applications

Evaluation under random traffic patterns

- The proposed latency model works for a variety of buffer depth and packet size combinations.
- For random traffic, about 5.2%-9.9% errors are introduced in predicting the network saturation point.

Evaluation under shuffle traffic patterns

- For the traffic patterns such as shuffle, a little larger error (10.8%-13%) is introduced due to the uneven traffic arrival rates across the channels.
- Overall, the analytical model achieves 70X speedup over the simulations for both traffic patterns.

Evaluation under burst and real traffic

Comparison of Poisson and GE-type traffic injection:

Evaluation under real application traces:

27

Introduction

NoC Modeling for Performance Analysis

- NoC end-to-end delay calculation
- Link dependency analysis
- GE-type traffic modeling
- Wormhole router based NoC latency model
- Experimental results
 - Simulation setup
 - Evaluation under synthetic traffic patterns
 - Evaluation under realistic benchmarks

Conclusion

Conclusion

In this work, we propose a new NoC latency model which generalizes the previous work by modeling:

- The arrival traffic burstiness
- > The general service time distribution
- > The finite buffer depth and arbitrary packet length combinations
- A link dependency analysis technique is proposed to determine the order of applying queuing analysis
- The accuracy of the model is demonstrated using both the synthetic traffic and real applications.
- A 70X speedup over simulation is achieved with less than 13% error in the proposed analytical model, which benefit the NoC synthesis process.

Thank you!!

