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Introduction 

• Chip multiprocessors (CMP) become the 
mainstream to build high-performance 
computers. 

• Integrating more processors onto a CMP 
infrastructure presents challenges. 
-  Traffic flows from processors are diverse,  
-  The impact of interferences among traffic 

flows may introduce high communication 
delay and reduce the CMP performance (in 
terms of CPI). 
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Flow Regulation 
• The on-chip (σ, ρ) flow regulation1 has been 
introduced to achieve proactive flow 
congestion control. 

- Based on network calculus2, a queuing theory 
for worst-case performance analysis in 
communication networks.  

- σ constrains the maximum burst of a flow and ρ the 
long-term average rate. 

• It can avoid traffic congestion and further 
decrease communication delay and reduce 
buffer requirements. 
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Flow Regulation Example 

P0 with $0

regulator 0 FC 0

P1 with $1

regulator 1

Network-on-Chip

Pn with $n

regulator n
...

• An example of (1, 0.2) regulation. 

After regulation 
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Previous Works 

• Two approaches in literature to achieve on-chip 
(σ, ρ) regulation: static1 and partially dynamic2. 

• Static (σ, ρ) regulation has (σ, ρ) offline 
configured. It is easy to implement, especially 
in providing real-time performance guarantees. 

• Partially dynamic (σ, ρ) regulation can further 
adaptively adjust (σ, ρ) parameters online in 
response to real traffic workload scenarios.  
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Problem Statement 
• However, both the static or partially dynamic 
regulation lack the adaptivity to different 
network states. Thus, over-regulation or under-
regulation may happen. 

1.  Over-regulation: the network is empty, but the 
admission control policy is tight. 

2.  Under-regulation: the network is saturated, but 
the admission control policy is loose. 

• In CMP environment, a desirable flow admission 
control policy should make regulation decisions 
according to the traffic dynamism as well as to 
the state of interconnection network. 

Network 
utilization  
is not 
optimized 
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Problem Statement - Cont. 

• It may not be appropriate to model the network 
states using exact logics which defines 
threshold to distinguish different states. 

• IF average_delay≥x THEN the network is 
saturated. How about average_delay=x-1? The 
network is unsaturated at all? 

• The network state is better recognized 
using fuzzy logic rather than exact logic. 

• Central idea: use fuzzy logic to recognize the 
network status and then intelligently control the 
admission of input flows.  8 



P0 with $0

regulator 0 FC 0

Pn with $n

regulator n FC n
...

Network-on-Chip

NSR
...

...

Design Overview 

• We design two kinds of component: network 
state recognizer (NSR) and fuzzy controller 
(FC), to achieve fully dynamic flow control. 

• The control loop is marked. 

Data 
 
Control 

ρ' K 
ρ 

avg_delay,  
avg_utilization 
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Design Overview - Cont. 

• In CMP, σ is equal to the size of a memory 
data block, thus remains changed. 

• The FC generates new flow injection rate 
ρ according to: 
1.  The cache missing rate of the local CPU (ρ’), 
2.  The network state indicator (K) from NSR. 

• The NSR monitors the network state through 
two metrics: average packet delay and 
average link utilization. 

• K reflects the network state, and is assigned 
one of the following three conditions: empty, 
normal, saturated. 10 



Design Overview - Cont. 

• In order to tolerate the control latency, our 
design is based on a sampling window 
mechanism. The new flow injection rate is 
updated periodically instead of continually.  

• All the CPUs share the same state of 
interconnect network. There is only one NSR 
per CMP chip. However, FC is attached to 
each CPU. 
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Fuzzy Logic Basics - Principle 

• Instead of using exact true/false, fuzzy logic uses 
degree of truth, which denotes how confidently we 
believe a statement is true. Degree of truth is in [0, 
1], with “1” indicates totally true and “0” totally false. 

• Degree of truth represents that a proposition might 
be more or less true, rather than simply true or 
simply false. For instance, the proposition 1 + 1 = 2 
is simply true, while The network is saturated is 
neither simply true nor simply false.  
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Fuzzy Logic Basics - Terminology 

• Membership Function (MF): The MF determines the 
degree of truth value of a proposition. 

• Fuzzy Rule: A fuzzy rule is defined as a statement in 
the form: IF x is A THEN y is B. For example, IF 
average_delay≥x THEN the network is saturated.  

- Note that a fuzzy rule can also be in the following form:  
             IF x is A AND y is B THEN z is C. 

• Rule Base: A set of fuzzy rules. 

• Consequence Membership Function (CMF): Select 
the “most true” proposition. 

 13 



Fuzzy Logic Basics - An Example 
LOW

D3 D5D2

MEDIUM

D4

Average Packet Delay (cycles)
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d
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1

EMPTY

S3S2
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Network Congestion Status

S1 S4

SATURATED

S6

C.M.F.0.5

1

1. IF avg. packet delay is LOW , THEN network status is EMPTY
2. IF avg. packet delay is MEDIUM , THEN network status is NORMAL
3. IF avg. packet delay is HIGH, THEN network status is SATURATED

Rule Base

C.V. (center of the gray area)

rule 1 rule 2
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Reference of Fuzzy Logics 
• For more information about fuzzy logics 
and fuzzy control (for example: shape/
number of MF/CMF, design of rule base) 
you are encouraged to read the following 
articles/books: 
1.  L.A. Zadeh, “Fuzzy Logic”, Stanford 

Encyclopedia of Philosophy, Stanford 
University, 2006. 

2.  K. M. Passino, S. Yurkovich, Fuzzy Control, 
Addison-Wesley, 1997. 
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Design Details 

• Both NSR and FC are designed with fuzzy 
logic, which are composed of the following 
four elements: 
1.  Fuzzification interface, which converts input 

variables into degree of truth values. 
2.  Rule base, which contains a set of fuzzy rules. 
3.  Inference mechanism, which makes decision 

by interpreting and applying rules in the rule 
base. Inputs for CMF are generated. 

4.  Defuzzification interface, which converts the 
conclusions of the inference mechanism into 
actual output signals. 
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Design Details - Cont.  
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Design Details - NSR 

Network state 
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Design Details - FC 
• In fuzzy controller, the network state affects the 
mapping of the membership functions. 

• To avoid both over-regulation and under-regulation: if 
the network is saturated, then a tight flow control policy 
is produced. Otherwise, a loose policy is produced. 
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Experiment Setup 
• Our design is implemented using C++ in the 
cycle accurate full system simulator GEMS. 

• We simulate 4 CMP chips,  
with16 CPUs, 16 private L1 
cache and 16 shared L2 
cache totally. 
- Synthetic flow patterns:  
  uniform random and  
  bit-permutation. 
- Benchmark program 
SPLASH2. 
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Synthetic Flows I: Uniform traffic 

• The experiment shows that the fuzzy flow regulation 
method can efficiently regulates flows. Both over-
regulation and under regulation are avoided. 
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Synthetic Flows II 

• The fuzzy flow regulation consistently improves 
the results of static regulation and no-regulation 
for both traffic patterns. 
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Results with SPLASH-2 
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• We experimented with the SPLASH-2 benchmark to 
confirm the performance benefits brought by the fuzzy 
flow regulation system. 

• Since in a real system the performance is measured by 
CPI, we choose to report the results for the network 
throughput here. 

 

23 



Conclusion 

• The central idea of this work is to make network 
status aware flow regulation through a fuzzy logic 
approach. 

•  On GEMS, our experiments with both synthetic 
traffic and SPLASH-2 benchmark traces show that 
the fuzzy regulation can flexibly adjust regulation 
strength on demand.  

• As a result, it makes more effective use of the 
system interconnect, achieving significant 
improvement in average packet delay and 
throughput. 
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Thank you very much! 
 

Q & A 

26 


