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Motivation 

 Artificial Neural Networks? 
 An information-processing system that has certain performance 

characteristics in common with biological neural network.  

 Characterized with three properties. 
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 Yout = f (Ynet_in ) 

Miao Hu et al. , “Hardware realization of BSB recall function using memristor crossbar arrays” DAC 2012 



Motivation 

 Artificial Neural Networks (ANNs) 
 Widely employed in data processing applications 

 State-of-the-art performance 
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Jeff Dean, “Large-Scale Data and Computation: Challenges and Opportunities”, January 19, 13 



Motivation 

 Combine ANNs and emerging devices 
 Promising solutions to ultra-high power efficient computing 

 Memristor-based approximated computation: > 400GFlops/W 
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Boxun Li et al. , “Memristor-based Approximated Computation”, ISLPED 2013 
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Motivation 

 ANNs must get trained for efficient data processing! 

 Training Phase: 
 Critical operation to obtain an ANN for a specific task.  

 Time consuming and resource intensive 

 Confined to digital (CPU/GPU/FPGA) systems 
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 Realize the self-training of memristor-based neural network 
through mixed-signal system 

 Analog unit:  

 work out the training calculations efficiently 

 directly configure the memristor without state tuning 

 Digital unit:  

 only help control the state of training 

 NOT performing a large amount of complicate calculations. 

 Performance and energy gains 

 

 

Training Itself 
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How to let the memristor train itself? 



Background: Memristor 

 Memristor 
 First physically realized by HP Labs in 2008 [Dmitri Nature 2008] 

 Ultra-integration density 

 The state of the memristor could be tuned by the current passing 
through itself 

 In this paper, we mainly take advantage of the variable resistance 
states of the memristor. 
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Background: Memristor Crossbar 

 Memristor Crossbar Array [Miao DAC2012] 

 Realize matrix-vector multiplication operation efficiently 
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Background: Memristor Crossbar 

 Memristor Crossbar Array [Miao DAC2012] 

 Realize matrix-vector multiplication operation efficiently 
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Background: Memristor-based Neural Net 

 Two crossbar arrays & Sigmoid circuit [G. Khodabandehloo TVLSI2012] 

 Since both R and M can only be positive, two crossbars are needed to 
represent the positive and negative weights of a network. 

 A multilayer neural network can be realized by combining several such 
architectures together 
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Nonlinear function  
(e.g. sigmoid) of ANN 
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Original Training Algorithm 

 Stochastic Gradient Descent (SGD) 
 One of the most common algorithms for neural network training 

 An iterative process and hard to be parallelized 

 The update of each weight (wji) between Node i (this layer) and Node 
j (next layer) is: 

 

 

 For the Node p in the output layer: 
 

 

 For the Node h in the hidden layers: 
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Proposed Method 

 Approximate calculations: 
 For the error calculations of Node p in the output layer: 

 

 

 For the Node h in the hidden layers: 

 

 

 

 

 The update of each weight (wji) between Node i (this layer) and Node 
j (next layer) is: 
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Proposed Method 

 Approximate calculations: 
 The update of each weight (wji) is still difficult to calculate 
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Supporting Architecture 

 After approximation, the calculations can be accomplished with 

analog circuits. 

 Approximate calculations: 

 For the error calculations of Node p in the output layer: 
 

 

 For the Node h in the hidden layers: 
 

 

 

 

 The update of each weight (wji) between Node i (this layer) and Node j 
(next layer) is: 
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Supporting Architecture 

 After approximation, the calculations can be accomplished with 

analog circuits. 

 Approximate calculations: 

 The update of each weight (wji) between Node i (this layer) and Node j 
(next layer) is: 
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Mixed-Signal Training Framework 

 Mixed-Signal Training Framework 
 Normal Crossbar: feedforward calculations for actual output 
 Copy Crossbar: backpropagate calculations of errors for weight update 
 Digital Unit: monitor training process and automatically adjust convergence rate 
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Mixed-Signal Training Framework 

 Mixed-Signal Training Framework 
 Calculate the actual output of the network 
 Calculate the error for weight update and automatically adjust convergence rate 
 Update weight (states of memristor in the crossbar) 
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Mixed-Signal Training Framework 

 Mixed-Signal Training Framework 
 Calculate the actual output of the network 
 Calculate the error for weight update and automatically adjust convergence rate 
 Update weight (states of memristor in the crossbar) 
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Mixed-Signal Training Framework 

 Mixed-Signal Training Framework 
 Calculate the actual output of the network 
 Calculate the error for weight update and automatically adjust convergence rate 
 Update weight (states of memristor in the crossbar) 
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Mixed-Signal Training Framework 

 Mixed-Signal Training Framework 
 Calculate the actual output of the network 
 Calculate the error for weight update and automatically adjust convergence rate 
 Update weight (states of memristor in the crossbar) 
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Mixed-Signal Training Framework 

 Mixed-Signal Training Framework 
 Calculate the actual output of the network 
 Calculate the error for weight update and automatically adjust convergence rate 
 Update weight (states of memristor in the crossbar) 
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Mixed-Signal Training Framework 

 Mixed-Signal Training Framework 
 Calculate the actual output of the network 
 Calculate the error for weight update and automatically adjust convergence rate 
 Update weight (states of memristor in the crossbar) 
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A Case Study: MNIST 

 We use the MNIST dataset as a case study 

 A widely used database of handwritten digits for optical character recognition 

 20,000 examples for training and 5,000 examples for testing 

 Training a 3-layer network 

• 784* (28*28 pixels) *300 (hidden layer)*10 (10 digits (‘0’~’9’) to recognize) 

 Compared with Intel i5-2320 @3.0GHz with MKL 
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A Case Study: MNIST 

 Results 

 The effect of training depends both on the Decay Rate and the Noise Rate. 

 > 90% recognition accuracy 

 A slight decrease of the accuracy of recognition (< 5%)  

 3 orders of magnitude speed-up 

 4 orders of magnitude energy saving 
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Conclusion 

28 

 Mixed-signal training acceleration framework for 
memristor-based neural network 
 Self-training 
 Modified training algorithm 

 approximating calculations 
 designing an alternative computing method 

 Mixed-signal acceleration architecture 
 Copy crossbar technique 
 Weight update units 
 Sign calculation units ...  

 3 orders of magnitude speed-up 
 4 orders of magnitude energy saving 
 A slight decrease of the recognition accuracy (<5%). 
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