HDTV1080p HEVC Intra Encoder with Source Texture based CU/PU Mode Pre-decision

Jia Zhu, Zhenyu Liu, Dongsheng Wang

Speaker: Jia Zhu Graduate Student of Tsinghua Univ., Beijing, China

Jan-22, 2014

Outlines

- Background Introduction
- Proposed Method
 - Predict Error Model
 - Pre CU Filtering
 - Intra Coding Process
- Hardware Design
- Experiment Result Soft. & Hard.
- Conclusion

HEVC Overview

- Emerging Video Coding Standard
 - developed by JCT-VC, finished in Jan-2013
 - aims to fulfill growing quality and resolution requirements
 - save 35-40% bit-rate cost compared to H.264/AVC

Main Profile

- quad-tree structure, CTU, luma and chroma
- raise candidate parameter vector \$\vec{p}\$, including CU/PU/TU
 RDO, \$\vec{p}_0\$ = arg min{D(\$\vec{p}\$) + \$\lambda\$ · \$R(\$\vec{p}\$)}}
- Difficulties in Real-time Intra Coding
 - adopt large scale CTU, 64x64 against 16x16
 - employ 35 PU modes for more accuracy prediction
 - more \vec{p} , and explosive RD calculation.

HEVC Intra Coding

Existent Work in Fast Intra Coding

Primary categories:

- Low-complexity RD-cost algorithms
- Filtering out most impossible modes
- Early termination based on pre-defined thresholds
- Theory basis:
 - Simplify estimation in non-critical cases
 - Explore spatial/temporal correlation
 - Reduce candidate number via image textures
- Existed Problems:
 - early termination method is sensitive to worst cases
 - image textures only used in PU search, rarely in CU
 - serial process is not change, parallel design is hard

Original Idea

Target

- real-time, stable high throughput
- Iow hardware cost
- Iow coding effect loss
- Method
 - design parallel CU search engines
 - propose pre-CU mode filtering, 2 CU mode
 - base on source image texture, quantified by edge strength, introduce none extra delay in pipeline
 - embed other fast algorithms in each CU search engine

Texture based Predict Error Estimation

Image Texture

- obtained directly from source image
- quantified as Edge Strength(ES)

Estimate Predict Error

- 1D example, x,f(x),i,f(i)
- f'(x) is derivation, f'(i-1)
- use f(i-1) to predict f(i)
- e(i) is the real PE value
- f'(i-1) is an estimation

• then,
$$e(i) = f'(i-1) - \Delta$$

 $\approx f'(i-1)$

Linear Predict Error Models in a CB

- Original Definition:
- Model Suppose:
- Involved Items:

$$Qs$$
 is quantization step, ES_k is Edge Strength of k_{th} pixe

- Parameter Study:
 - Weighted least squares estimation:

$$\arg\min_{\{a,b_k\}} \left\{ \sum_{\tau=0}^{M-1} \left[\sum_{k=1}^{N^2-1} \omega_k \cdot (PE_k(\tau) - \widetilde{PE}_k(\tau))^2 + \omega_{N^2} \cdot (\sum_{k=1}^{N^2-1} PE_k(\tau) - \sum_{k=1}^{N^2-1} \widetilde{PE}_k(\tau))^2 \right] \right\}$$

each pixel weight $\omega_k = 1$, sum. of all pixels weight $\omega_{N^2} = \frac{1}{N^2}$

$$PE_{k} = (P_{k} - C_{k})^{2}$$
$$\widetilde{PE}_{k} = a \cdot Qs^{2} + b \cdot ES_{k}$$

PE Model Classification

Model Para. Examples

Prominent Direction

- D0, 07-13, horizontal
- D1, 14-22, -45 degree
- D2, 23-29, vertical
- D3, others, 45 degree
- Homogeneity
 - homo
- ES Amplitude
 - M0: ES<400</p>

PE based RD Cost Estimation

- Pixel Rate&Distortion Estimation
 - $\widetilde{R}_k = \alpha \cdot \omega_r \cdot \widetilde{PE_k}$, $\widetilde{D}_k = \omega_d \cdot \widetilde{PE_k}$
 - $\alpha = 7 / 64$, rate conversation factor
 - ω_r, ω_d , weighting factors, theory and experience based
- RD Cost of NxN Blocks
 - N=4,8,16,32 $RD_N = \sum_{k=1}^{N^2 1} (\widetilde{R}_k + \widetilde{D}_k)$

RD Cost of partitioned Block

$$RD_{\oplus N} = \sum_{n=0}^{3} RD_{\frac{N}{2}}(n) + 3 \cdot \alpha \cdot (\gamma_{\text{mod}e} + \gamma_{cbf})$$

k=0

4 sub-blocks' RD cost and merge cost

• $\gamma_{mode} = 4$, $\gamma_{cbf} = 1$, prediction mode bits and code-block-flag bit

Pre Modes Filtering

Edge Calculation

- 1 pixel cal. once, map to all CBs
- ES based Models Classify:
 - each CB is an unit, through EA
- Predict Error Estimate
 - corres. model and para.
- RD estimation
- Pre-CU Mode Filtering
 - LCB: 32x32 vs. 4 16x16
 - SCB: 8 x 8 vs. 4 4 x 4

Panoramic View of Proposed Method

CTU luma partition 64x64-> 4 32x32 CBs 64x64 is abandoned Pre-process: CU mode filtering model Parallel PU search: fast search applied LCB RDO: 32 / 16 SCB_RDO: 8 / 4 Final Mode Decision.

Proposed RDO process

Pre-CU Filtering Structure

ES Analysis

- pixels input row by row
- block finished->class info.
- send class info, save ES
- PE Models & RD Estimation
 - Mod.1,2,3,4: size 32,16,8,4
 - row by row cal. & acc.
- Mode Filter
 - $\textbf{R}D_N, \textbf{R}D_{\oplus N}, N \in \{8, 32\}$
 - mode reserved cases: $\{32,8\},\{16,8\},\{32,4\},\{16,4\}$

PU/TU Mode Search Structure

Predictor

- 128 pixel*mode/cycle
- timing conflict: interrupt
- critical path: small one
- Two Search Engines
 - SCB PU RDO
 - LCB PU RDO
 - fast search used
- Trans. Mode Decision
 - compare the best 2 cand.
 - search the best TU mode

Coding Timing Analysis

Module and Function

Time/Cycle

Coding Performance

Environment

- reference:HM-10
- sequence: typical 22
- QP={22,27,32,37}

Result

	BD-	BD-	Time
	PSNR	Rate	Saved
	[dB]	[%]	[%]
Max	-0.41	6.73	72.6
Min	-0.11	1.97	54.2
Average	-0.20	4.53	61.7

Class	Commence	BD-PSNR	BD-Rate	Time Saved
	Sequence	[dB]	[%]	[%]
А	PeopleOnStreet	-0.21	4.61	61.4
	Traffic	-0.21	4.34	61.9
В	BasketballDrive	-0.17	6.73	61.7
	BQTerrace	-0.19	4.32	64.9
	Cactus	-0.14	4.28	72.6
	Kimono	-0.12	4.39	68.1
	ParkScene	-0.11	3.39	58.3
	Tennis	-0.18	5.92	62.0
С	BasketballDrill	-0.21	4.63	60.0
	BasketballDrillText	-0.21	4.75	60.6
	BQMall	-0.20	4.15	58.4
	RaceHorses	-0.19	3.38	58.6
D	BassketballPass	-0.24	4.80	58.8
	BlowingBubbles	-0.19	3.44	54.2
	BQSquare	-0.15	1.97	55.1
	Keiba	-0.21	4.02	60.3
Е	SlideEditing	-0.41	2.94	61.1
	Vidyo1	-0.25	6.04	64.8
	Vidyo3	-0.23	5.35	63.4
	Vidyo4	-0.21	5.19	63.6
	Johnny	-0.21	5.15	63.5
	KristenAndSara	-0.24	5.86	63.6
Average		-0.20	4.53	61.7

Hardware Consumption

Environment

- described with Verilog HDL
- synthesized with DC, TSMC90nm 1P9M technology

Results

- maximum speed, 357 MHz
- fulfill HD1080p@44fps real-time intra coding

Module	Pre-Mode	Rcnf.	32/16 CU	8/4 PU	Rcns.	Total	
	Filter	Predictor	RDO	RDO	Datapath	Total	
Gates(K)	214.1	817.3	781.3	450.6	507.2	2269.0	
Pwr(mW)	26.2	101.4	25.2	32.9	32.2	217.9	

Conclusion

Fast HECV Intra Encoder

- EdgeStrength based PredictError models
- pre-CU/PU mode filtering
- parallel fast search engines
- Results and Contributions
 - averagely 61.7% time save while 0.20dB BD-PSNR loss
 - stable and robust acceleration
 - 57% hardware saved totally in mode searching
 - max speed: 357MHz with TSMC90
 - support4:2:0 HD1080p@44fps HEVC real-time encoding

THANK YOU!