HDTV1080p HEVC Intra Encoder with Source Texture based CU/PU Mode Pre-decision

Jia Zhu, Zhenyu Liu, Dongsheng Wang

Speaker: Jia Zhu
Graduate Student of
Tsinghua Univ., Beijing, China
Jan-22, 2014

Outlines

- Background Introduction
- Proposed Method
- Predict Error Model
- Pre CU Filtering
- Intra Coding Process
- Hardware Design
- Experiment Result Soft. \& Hard.
- Conclusion

HEVC Overview

- Emerging Video Coding Standard
- developed by JCT-VC, finished in Jan-2013
- aims to fulfill growing quality and resolution requirements
- save 35-40\% bit-rate cost compared to H.264/AVC
- Main Profile
- quad-tree structure, CTU, luma and chroma
- raise candidate parameter vector \vec{p}, including CU/PU/TU
- RDO, $\vec{p}_{0}=\arg \min _{\vec{p}}\{D(\vec{p})+\lambda \cdot R(\vec{p})\}$
- Difficulties in Real-time Intra Coding
- adopt large scale CTU, 64x64 against 16x16
- employ 35 PU modes for more accuracy prediction
- more \vec{p}, and explosive RD calculation.

HEVC Intra Coding

Existent Work in Fast Intra Coding

- Primary categories:
- Low-complexity RD-cost algorithms
- Filtering out most impossible modes
- Early termination based on pre-defined thresholds
- Theory basis:
- Simplify estimation in non-critical cases
- Explore spatial/temporal correlation
- Reduce candidate number via image textures
- Existed Problems:
- early termination method is sensitive to worst cases
- image textures only used in PU search, rarely in CU
- serial process is not change, parallel design is hard

Original Idea

- Target
- real-time, stable high throughput
- low hardware cost
- low coding effect loss
- Method
- design parallel CU search engines
- propose pre-CU mode filtering, 2 CU mode
- base on source image texture, quantified by edge strength, introduce none extra delay in pipeline
- embed other fast algorithms in each CU search engine

Texture based Predict Error Estimation

- Image Texture
- obtained directly from source image
- quantified as Edge Strength(ES)
- Estimate Predict Error
- 1D example, $x, f(x), i, f(i)$
- $f^{\prime}(x)$ is derivation, $f^{\prime}(i-1)$
- use $f(i-1)$ to predict $f(i)$
- $e(i)$ is the real PE value
- $f^{\prime}(i-1)$ is an estimation
- then, $e(i)=f^{\prime}(i-1)-\Delta$

$$
\approx f^{\prime}(i-1)
$$

Linear Predict Error Models in a CB

- Original Definition: $\quad P E_{k}=\left(P_{k}-C_{k}\right)^{2}$
- Model Suppose:

$$
\widetilde{P E}_{k}=a \cdot Q s^{2}+b \cdot E S_{k}
$$

- Involved Items:
- Qs is quantization step, $E S_{k}$ is Edge Strength of $k_{t h}$ pixel
- Parameter Study:
- Weighted least squares estimation:
$\left.\arg \min _{\left\{a, b_{k}\right\}}\left\{\sum_{\tau=0}^{M-1}\left[\sum_{k=1}^{N^{2}-1} \omega_{k} \cdot \underline{\left(P E_{k}(\tau)-\widetilde{P E}\right.} k(\tau)\right)^{2}+\omega_{N^{2}} \cdot\left(\sum_{k=1}^{N^{2}-1} P E_{k}(\tau)-\sum_{k=1}^{N^{2}-1} \widetilde{P E}_{k}(\tau)\right)^{2}\right]\right\}$
each pixel weight $\omega_{k}=1$, sum. of all pixels weight $\omega_{N^{2}}=\frac{1}{N^{2}}$

PE Model Classification

- Histogram of ES
- axis $x, 33$ angular mode
- axis y, projected ES
- Prominent Direction
- 4 classes
- Directional Homogeneity
- main-neighbor-5 vs. all
- 2 classes
- ES Amplitude
- 7 classes

Model Para. Examples

- Prominent Direction
- D0, 07-13, horizontal
- D1, 14-22, -45 degree
- D2, 23-29, vertical
- D3, others, 45 degree
- Homogeneity
- homo
- ES Amplitude
- MO: ES<400

Homo MO D2

Homo MO D3

PE based RD Cost Estimation

- Pixel Rate\&Distortion Estimation

$$
\widetilde{R}_{k}=\alpha \cdot \omega_{r} \cdot \widetilde{P E_{k}} \quad, \quad \widetilde{D}_{k}=\omega_{d} \cdot \widetilde{P E_{k}}
$$

- $\alpha=7 / 64$, rate conversation factor
- ω_{r}, ω_{d}, weighting factors, theory and experience based
- RD Cost of NxN Blocks
- N=4,8,16,32

$$
R D_{N}=\sum_{k=0}^{N^{2}-1}\left(\widetilde{R}_{k}+\widetilde{D}_{k}\right)
$$

- RD Cost of partitioned Block

$$
R D_{\oplus N}=\sum_{n=0}^{3} R D_{\frac{N}{2}}(n)+3 \cdot \alpha \cdot\left(\gamma_{\text {mode }}+\gamma_{c b f}\right)
$$

- 4 sub-blocks' RD cost and merge cost
- $\gamma_{\text {mode }}=4, \quad \gamma_{\text {of }}=1$, prediction mode bits and code-block-flag bit

Pre Modes Filtering

- Edge Calculation
- 1 pixel cal. once, map to all CBs
- ES based Models Classify:
- each CB is an unit, through EA
- Predict Error Estimate
- corres. model and para.
- RD estimation
- Pre-CU Mode Filtering
- LCB: 32×32 vs. 4 16x16
- SCB: 8×8 vs. 44×4

Pre CU filtering flows

Panoramic View of Proposed Method

- CTU luma partition
- 64x64-> 4 32x32 CBs
- 64×64 is abandoned
- Pre-process:
- CU mode filtering model
- Parallel PU search:
- fast search applied
- LCB_RDO: 32 / 16
- SCB_RDO: 8 / 4
- Final Mode Decision.

Pre-CU Filtering Structure

- ES Analysis
- pixels input row by row
- block finished->class info.
- send class info, save ES
- PE Models \& RD Estimation
- Mod.1,2,3,4: size 32,16,8,4
- row by row cal. \& acc.
- Mode Filter
- $R D_{N}, R D_{\oplus N}, N \in\{8,32\}$

- mode reserved cases: $\{32,8\},\{16,8\},\{32,4\},\{16,4\}$

PU/TU Mode Search Structure

- Predictor
- 128 pixel*mode/cycle
- timing conflict: interrupt
- critical path: small one
- Two Search Engines
- SCB PU RDO
- LCB PU RDO
- fast search used
- Trans. Mode Decision
- compare the best 2 cand.
- search the best TU mode

Coding Timing Analysis

Module and Function

Time/Cycle

Coding Performance

- Environment

- reference:HM-10
- sequence: typical 22
- QP=\{22,27,32,37\}
- Result

	BD-	BD-	Time PSNR [dB]
Rate	Saved		
[\%]	$[\%]$		
Max	-0.41	6.73	72.6
Min	-0.11	1.97	54.2
Average	-0.20	4.53	61.7

Class	Sequence	BD-PSNR $[\mathrm{dB}]$	BD-Rate $[\%]$	Time Saved $[\%]$
A	PeopleOnStreet	-0.21	4.61	61.4
	Traffic	-0.21	4.34	61.9
	BasketballDrive	-0.17	6.73	61.7
	BQTerrace	-0.19	4.32	64.9
	Cactus	-0.14	4.28	72.6
	Kimono	-0.12	4.39	68.1
	ParkScene	-0.11	3.39	58.3
	Tennis	-0.18	5.92	62.0
C	BasketballDrill	-0.21	4.63	60.0
	BasketballDrillText	-0.21	4.75	60.6
	BQMall	-0.20	4.15	58.4
	RaceHorses	-0.19	3.38	58.6
	BassketballPass	-0.24	4.80	58.8
	BlowingBubbles	-0.19	3.44	54.2
	BQSquare	-0.15	1.97	55.1
	Keiba	-0.21	4.02	60.3
E	SlideEditing	-0.41	2.94	61.1
	Vidyo1	-0.25	6.04	64.8
	Vidyo3	-0.23	5.35	63.4
	Vidyo4	-0.21	5.19	63.6
	Johnny	-0.21	5.15	63.5

Hardware Consumption

- Environment
- described with Verilog HDL
- synthesized with DC, TSMC90nm 1P9M technology
- Results
- maximum speed, 357 MHz
- fulfill HD1080p@44fps real-time intra coding

Module	Pre-Mode Filter	Rcnf. Predictor	$32 / 16$ CU RDO	$8 / 4$ PU RDO	Rens. Datapath	Total
	214.1	817.3	781.3	450.6	507.2	2269.0
Pwr (mW)	26.2	101.4	25.2	32.9	32.2	217.9

Conclusion

- Fast HECV Intra Encoder
- EdgeStrength based PredictError models
- pre-CU/PU mode filtering
- parallel fast search engines
- Results and Contributions
- averagely 61.7% time save while 0.20 dB BD-PSNR loss
- stable and robust acceleration
- 57\% hardware saved totally in mode searching
- max speed: 357MHz with TSMC90
- support4:2:0 HD1080p@44fps HEVC real-time encoding

THANK YOU!

