



# Storage-less and converter-less maximum power tracking of photovoltaic cells for a nonvolatile microprocessor

Cong Wang, Naehyuck Chang, Y. Kim, S. Park, Yongpan Liu, Hyung Gyu Lee, R. Luo, H. Yang 2014/1/22

#### Outline

- Background
  - Energy harvesting for IoT applications
  - Maximum power point tracking (MPPT) of a photovoltaic module
  - Conventional system architecture and problems
- Storage-less and converter-less MPPT
  - With a nonvolatile microprocessor
- System evaluation
- Conclusion





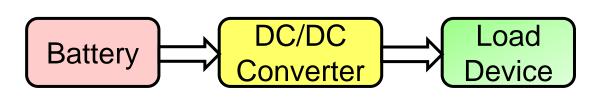
# Developing IoT applications

- Internet of things (IoT) on the way
  - Structural health monitoring
  - Smart agriculture
  - Smart transportation
  - Etc...















# Energy & maintenance is a big problem

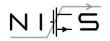
- Battery powered devices
  - Most widely used
  - Limited capacity
  - Need regular maintenance
  - Volume/weight overheads
  - Potential high cost







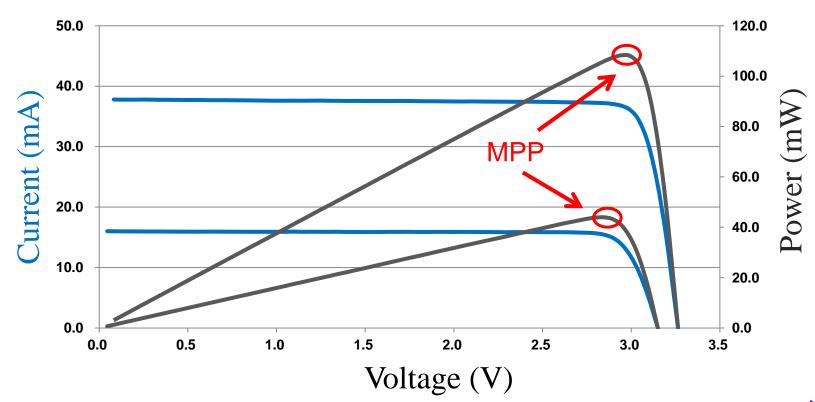





# **Energy harvesting**

Power density estimates of different sources

| <b>Energy Source</b>          | Harvested Power          |
|-------------------------------|--------------------------|
| Vibration/Motion              |                          |
| Human                         | 4 μW/cm <sup>2</sup>     |
| Industry                      | 100 μW/cm <sup>2</sup>   |
| <b>Temperature Difference</b> |                          |
| Human                         | 25 μW/cm <sup>2</sup>    |
| Industry                      | 1-10 mW/cm <sup>2</sup>  |
| Light                         |                          |
| Indoor                        | 10 μW/cm <sup>2</sup>    |
| Outdoor                       | 10 mW/cm <sup>2</sup>    |
| RF                            |                          |
| GSM                           | 0.1 μW/cm <sup>2</sup>   |
| WiFi                          | 0.001 μW/cm <sup>2</sup> |

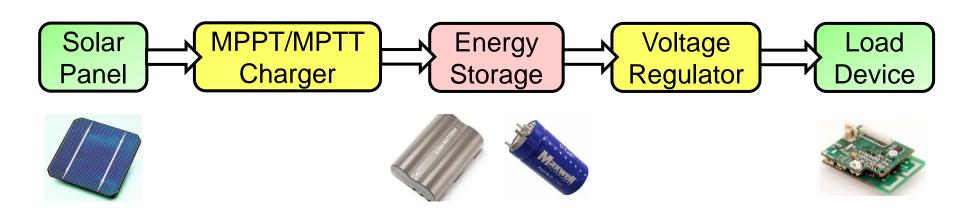

Source: Texas Instruments White Paper - ULP meets energy harvesting: A gamechanging combination for design engineers

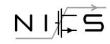




# Harvesting solar energy

- Maximum Power Point Tracking (MPPT)
  - Try to extract as much power as possible from the solar panel



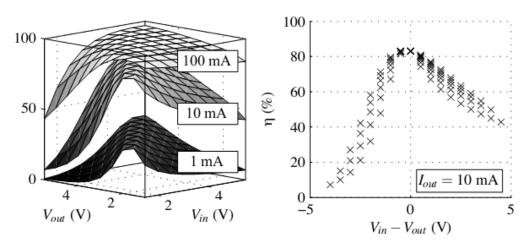






# Traditional system architecture

- Solar energy is first charged to a energy storage device (supercapacitor/battery)
- Stored energy is then retrieved and delivered to the load device








#### Problems in traditional architecture

- 2 stage power converters
  - Expensive
  - Significant conversion loss

- Energy storage
  - Higher cost
  - Weight/volume overhead
  - Limited work cycles (Rechargeable battery)
  - Leakage (Supercapacitor)

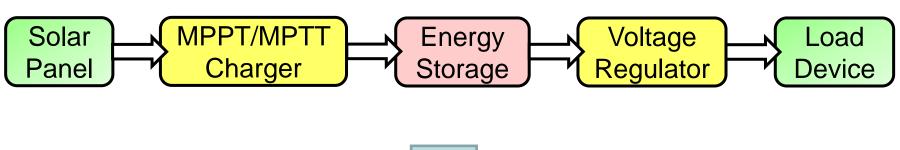


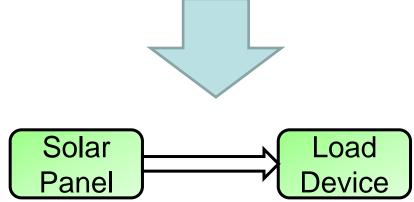
Source: Y. Kim, N. Chang, Y. Wang, M. Pedram - Maximum power transfer tracking for a photovoltaic-supercapacitor energy system

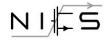
Is there an alternate **cheap** and **efficient** way to utilize solar energy?






#### Outline


- Background
  - Energy harvesting for IoT applications
  - Maximum power point tracking (MPPT) of a photovoltaic module
  - Conventional system architecture and problems
- Storage-less and converter-less MPPT
  - With a nonvolatile microprocessor
- System evaluation
- Conclusion






# Storage-less and Converter-less



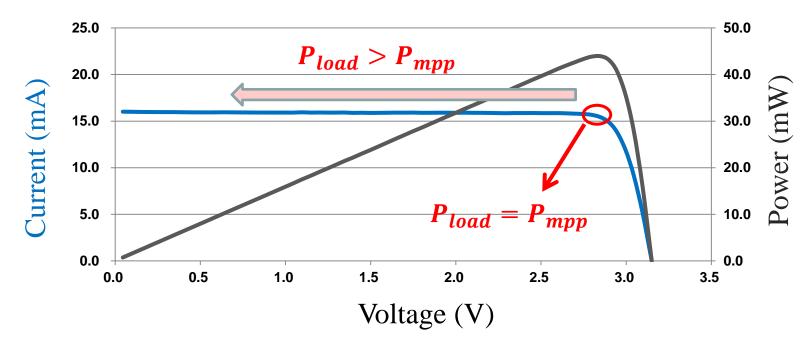






# Storage-less and Converter-less

#### **Advantages**


- Storage-less
  - No long-term energy storage (battery or super-capacitor)
  - Maintenance free
  - Volume, weight and cost reduction
- Converter-less
  - Higher power transfer efficiency
  - Lower cost

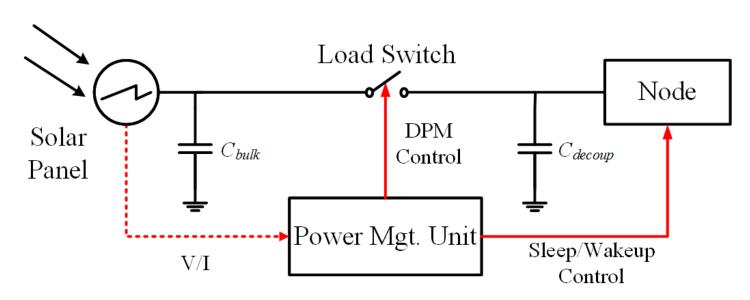




#### Does it work?

- How to ensure the functionality?
  - $V_{solar}$  collapses if  $P_{load} > P_{mpp}$



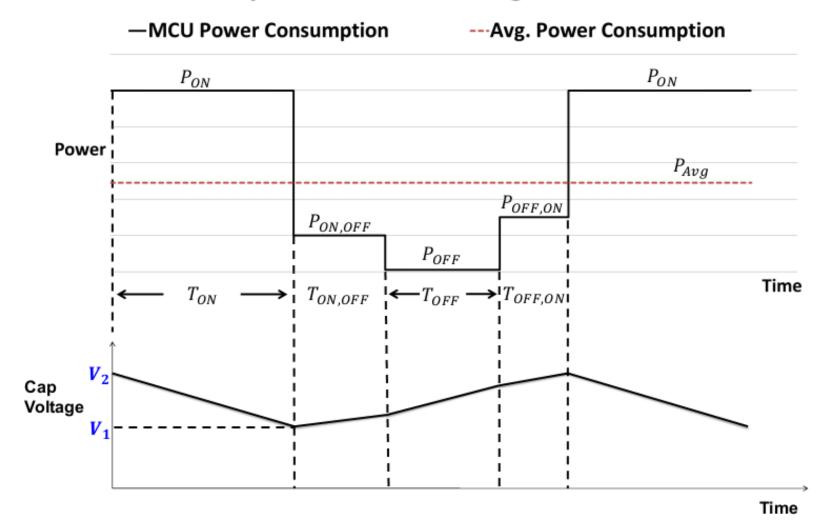

- How to perform MPPT?
  - How to match  $P_{load}$  with the varying  $P_{solar}$

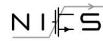




#### Proposed solution

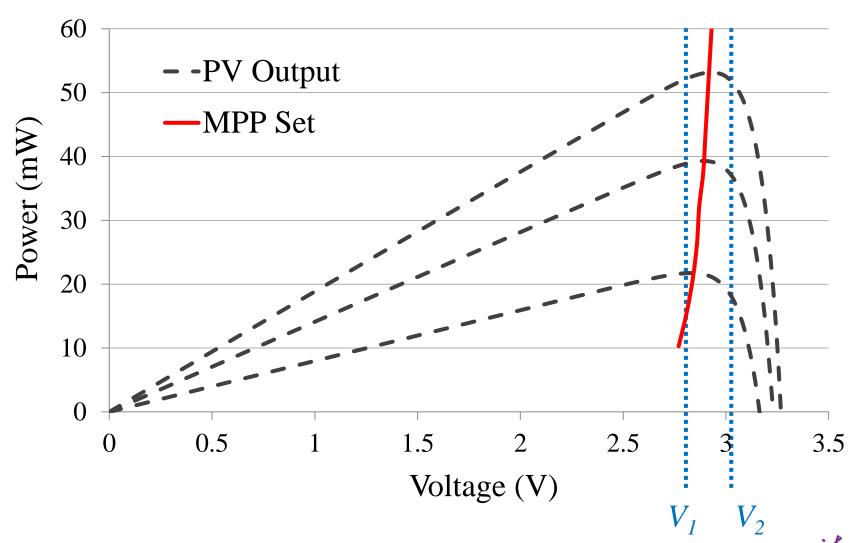
- Connect the PV to the load via a load switch
- Adjust average load current by Dynamic Power Management(DPM)
- Match the average load current with the MPP current of the solar panel

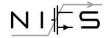





# MPPT achieved by fine-grained DPM


#### **Dynamic Power Management**





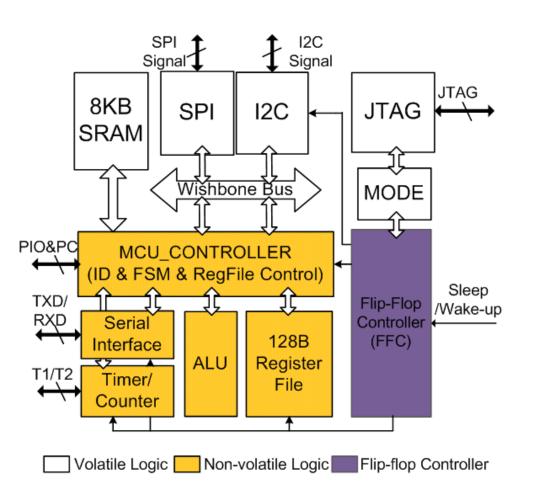



# MPPT achieved by fine-grained DPM





パ事大学 Tsinghua University


# Need for a nonvolatile microprocessor

- Transition overheads are NOT negligible
  - Especially when transitions are frequent ( $C_{bulk} \sim 1 \mu F$ ,  $T_{DPM} \sim$  several ms)
  - Smaller time overhead, more time for task execution
  - Smaller energy overhead, more energy for task execution
- Transition overheads are significant for conventional microprocessor
  - Typical time overhead
    - Several *ms*
  - Typical energy overhead
    - 20 mA if write to a Flash





# THU1010N nonvolatile microprocessor



- Based on standard 8051 micro-controller
- Fully replace original Flip-Flop with Nonvolatile FeFF
- Flip-flip Controller
- Peripherals for embedded applications and online debug





# Transition overheads comparison

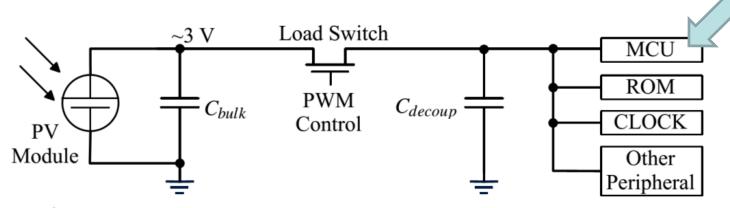
NV processor is faster in state transitions

|               | THU1010N | TI-MSP430<br>with Flash [1] | TI-MSP430 with<br>FRAM [2] |  |  |
|---------------|----------|-----------------------------|----------------------------|--|--|
| Backup time   | 8us      | 6ms                         | 212us                      |  |  |
| Recovery time | 3us      | 3ms                         | 310us                      |  |  |

Less energy overhead in state transitions for NV processor

|                 | THU1010N | TI-MSP430<br>with Flash [1] | Ratio |  |  |
|-----------------|----------|-----------------------------|-------|--|--|
| Backup energy   | 23.1nJ   | 445uJ                       | 19000 |  |  |
| Recovery energy | 8.1nJ    | 0.6uJ                       | 74    |  |  |






# Storage-less and Converter-less MPPT

#### MPPT

- Achieved by Dynamic Power Management (DPM)
- DPM is fine-grained power gating of the node
- A buck capacitor is used as energy buffer and extend the time constant
- Nonvolatile microprocessor

Minimize transition overheads to improve system efficiency

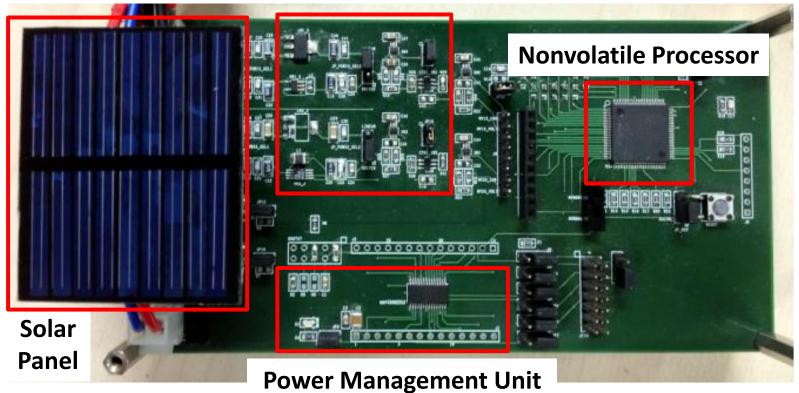




Nonvolatile

Microprocessor

#### Outline


- Background
  - Energy harvesting for IoT applications
  - Maximum power point tracking (MPPT) of a photovoltaic module
  - Conventional system architecture and problems
- Storage-less and converter-less MPPT
  - With a nonvolatile microprocessor
- System evaluation
- Conclusion

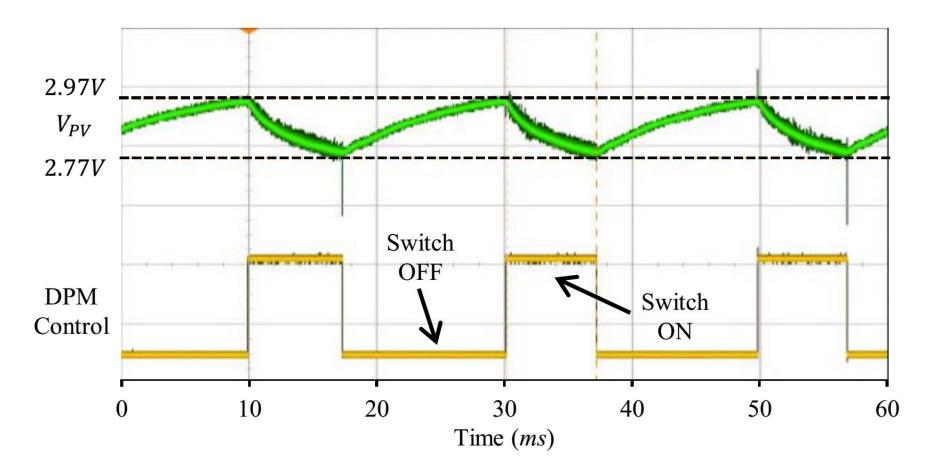




#### **Evaluation board**

#### **Buck Capacitor & Load Switch**




ower Management Unit (MSP430 for flexibility)

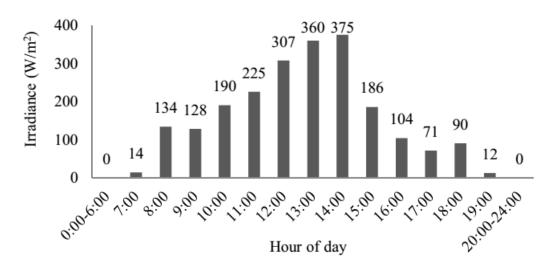




#### **Evaluation board**

#### Captured waveform








# Efficiency evaluation

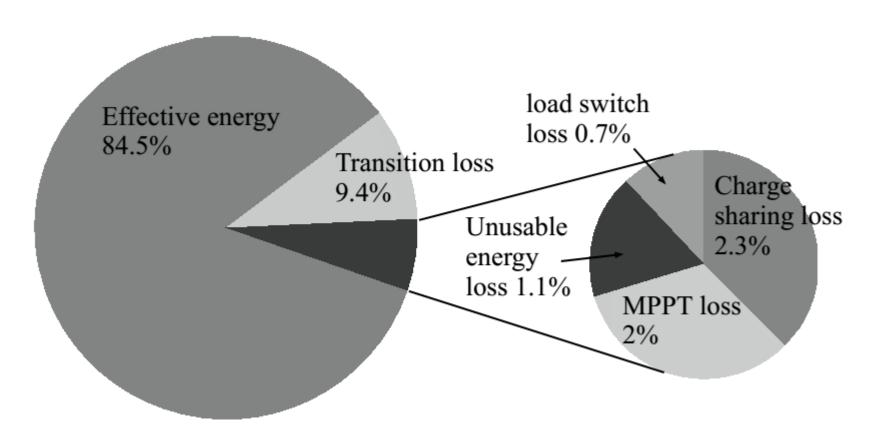
#### Simulation Setup

- $-P_{ON} = 25mW, P_{mpp} = 14.7mW@200W/m^2$
- $C_{bulk} = 4.7 \mu F$ ,  $C_{decoup} = 20 n F$
- $[V_1, V_2] = [2.75V, 2.90V]$
- Assume  $P_{ON} = P_{ON,OFF} = P_{OFF,ON}$
- Transition Time Overhead
  - $T_{ON,OFF} = 8\mu s$ ,  $T_{OFF,ON} = 3\mu s$  (Proposed system with NVMCU)
  - $T_{ON,OFF} = 0.3ms$ ,  $T_{OFF,ON} = 0.2ms$  (Proposed system with conv. MCU)
- Omit the power consumption of the power management unit






# Efficiency evaluation

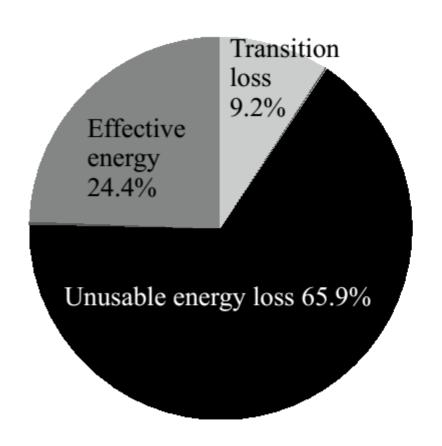

TABLE IV
DYNAMIC POWER MANAGEMENT RESULTS.

| Common DPM statistics |                 |                       | Proposed System |                 |      | Volatile<br>Microprocessor<br>Baseline |                         |      |                  |                         |
|-----------------------|-----------------|-----------------------|-----------------|-----------------|------|----------------------------------------|-------------------------|------|------------------|-------------------------|
| Time                  | $V_{mpp}$ $(V)$ | $T_{dpm}$ ( $\mu s$ ) | $D_{dpm}$       | $E_{mpp}$ $(J)$ | Work | $E_{task}$ $(J)$                       | η <sub>sys</sub><br>(%) | Work | $E_{task}$ $(J)$ | η <sub>sys</sub><br>(%) |
| 7:00                  | 2.50            | N/A                   | N/A             | 4.83            | No   | 0                                      | 0                       | No   | 0                | 0                       |
| 8:00                  | 2.73            | 218                   | 31.6%           | 50.14           | Yes  | 36.38                                  | 72.6                    | No   | 0                | 0                       |
| 9:00                  | 2.72            | 224                   | 30.0%           | 47.81           | Yes  | 34.30                                  | 71.7                    | No   | 0                | 0                       |
| 10:00                 | 2.76            | 191                   | 46.9%           | 71.95           | Yes  | 57.07                                  | 79.3                    | No   | 0                | 0                       |
| 11:00                 | 2.78            | 195                   | 56.5%           | 85.69           | Yes  | 71.25                                  | 83.1                    | No   | 0                | 0                       |
| 12:00                 | 2.80            | 301                   | 79.7%           | 118.14          | Yes  | 108.37                                 | 91.7                    | No   | 0                | 0                       |
| 13:00                 | 2.82            | 1100                  | 95.1%           | 139.27          | Yes  | 135.39                                 | 97.2                    | Yes  | 65.74            | 47.2                    |
| 14:00                 | 2.82            | 1360                  | 99.6%           | 145.27          | Yes  | 143.72                                 | 98.9                    | Yes  | 138.34           | 95.2                    |
| 15:00                 | 2.76            | 192                   | 45.8%           | 70.38           | Yes  | 55.51                                  | 78.9                    | No   | 0                | 0                       |
| 16:00                 | 2.70            | 260                   | 23.6%           | 38.57           | Yes  | 26.27                                  | 68.1                    | No   | 0                | 0                       |
| 17:00                 | 2.67            | 369                   | 14.8%           | 25.98           | Yes  | 15.90                                  | 61.2                    | No   | 0                | 0                       |
| 18:00                 | 2.69            | 294                   | 19.9%           | 33.21           | Yes  | 21.78                                  | 65.6                    | No   | o                | 0                       |
| 19:00                 | 2.50            | N/A                   | N/A             | 4.11            | No   | 0                                      | 0                       | No   | o                | 0                       |
|                       | Ove             | rall                  |                 | 835.34          |      | 705.94                                 | 84.5                    |      | 204.08           | 24.4                    |

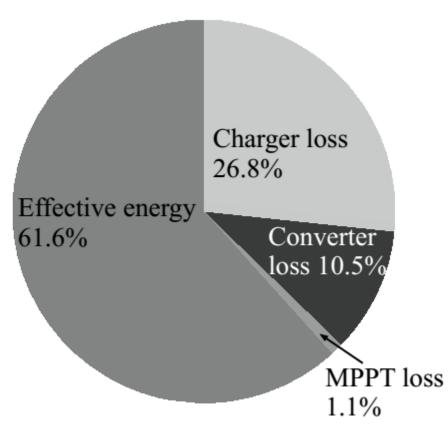




# Efficiency of the proposed system




• Efficiency up to 95.4% if  $C_{bulk} = 47 \mu F$ 





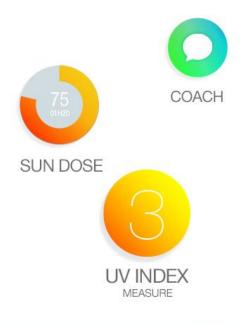

# Efficiency of conventional system



(b) Volatile microprocessor baseline



(c) Conventional MPTT baseline






# **Emerging application**

- JUNE -- a wearable bracelet with UV sensor
- Sun protection advice
  - SPF, sunglasses
  - Wear a hat







Source: http://www.netatmo.com/en-US/product/june






#### Conclusion

- Storage-less and Converter-less MPPT
  - Provides a very efficient way to power electronic devices with solar panels
  - Low cost and maintenance-free
  - Demonstrates a promising application for nonvolatile microprocessors
- Extension
  - Combine with traditional system(2 coverters + supercap) to achieve higher efficiency and better QoS simultaneously





# Thank You



