
Josef Schneider, Jorgen Peddersen, Sri Parameswaran

 A Scorchingly Fast FPGA-Based

Precise L1 LRU Cache Simulator

Why simulate a cache?

To find optimal configuration for a specific application.

Why simulate a cache?

• For many modern processors, the cache configuration
can be chosen at design time (ARM, Xtensa, NIOS II,
etc.)

• Optimal cache configuration can be found through
cache simulation.

• Current cache simulator solutions require lengthy
simulation times.

Contributions

• FPGA-based Multiple Cache Simulator

exhibiting:

• 100MHz memory trace consumption rate.

• Simulates 44 caches concurrently.

• Ability to implement in-system for real-time cache

simulation.

Presentation Contents

What is a cache?

Existing simulator shortcomings

Cache simulator design

Performance comparison

Future work

What is a cache?

Main Memory

Cache

1 – 2 CC 10+ CC
CPU

The Accountant’s Desk Analogy

A cache is like a desk

Picking up a document from
the desk takes very little time

Getting it from the filing cabinet
takes a lot longer

When you get a document from the filing
cabinet, you are likely to reuse it, so you
put it on the desk for faster access

Desk Considerations

The bigger the desk is, the more documents it can hold, but:

• It will cost more

• It will take longer to find this document on the desk

Three Factors, Many Combinations

4 bytes 8 bytes

1) Line Length 2) Set size

16/32/64/… Lines

3) Associativity

1 2 4

Hundreds of Combinations

0

1

2

3

4

5

6

7

8

9

Lowest bits give cache index. For example,

a 16 line cache will store: 0x2003

Notable Existing LRU Cache Sims

• DineroIV (J. Edler and M. Hill) for LRU, FIFO and

Random cache replacement policies.

• Cheetah (Sugumar et al.).

• “Finding optimal L1 cache configuration for embedded

systems” (A. Janapsatya et al.) for LRU policy.

• CRCB Algorithm (Tojo et al.).

• SuSeSim (M. Haque et al.).

Existing Cache Sim. Shortcomings

• All are implemented in software and require lengthy
computations for advanced applications
(Using Cheetah: simulating an MPEG2 encoder for 24 video frames took over 65
minutes for 44 cache configurations.)

• Simulations are usually based on static traces which take a very
long time to generate
(On the Xtensa processor simulator: creating the trace for the MPEG2 encoding
application took over 70 hours.)

• Application inputs are hard-coded
(Simulated inputs are contrived and may not represent realistic application input.)

Our Solution: Cache Sim. In Hardware

Our hardware-based cache simulator can be

configured on an FPGA. By exploiting two LRU cache

inclusion properties, many caches can be simulated

concurrently and efficiently.

In software, inclusion properties allow for faster

simulation (fewer searches). In hardware, the same

properties are used to minimise hardware utilisation.

Inclusion Property 1

An LRU cache of set size s, line length l and associativity a is a

subset of an LRU cache of set size s, line length l and associativity

larger than a.

(Mattson et al. 1970)

LRU Replacement Example

Access Address:

0x4

0x1204 0x3604 0x3204

1 2 1 3 2 1

0x1204

Hit!

3 2 1

0x9354

4 3

0x5784

2 4

LRU Replacement Example

The same behaviour is exhibited by an LRU shift

register.

1 2 3 4

Making use of Inclusion Property 1

Thanks to Inclusion Property 1, cache sets of

associativity a and smaller can be simulated using the

same hardware.

1
2
4
8

Hit Counter Assoc 8

Hit Counter Assoc 4

Hit Counter Assoc 2

Hit Counter Assoc 1

Hit!

Top Level Cache Sim. Design

Enables the simulation of caches of set size 4 and associativities 4 and smaller.

Inclusion Property 2

A cache of line length l, associativity a and set size s is

always a subset of a cache of line length l, associativity

a and set size larger than s. (Mattson et al. 1970)

Set Size = 4

Set Size = 8

0

1

2

3

0

1

2

3

4

5

6

7

‘0’

‘1’

Making use of Inclusion Property 2

This can be used to our advantage

Top level

Set Size = 2

Set Size = 4

00 01 10 11

Valid

Location

Masks

‘Sub Set’

1 2 3 1

Addr:

1)0b101000
2)0b101010
3)0b011000
4)0b101000

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0

0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0

1 0 0 0

1 1 0 0 1 0 0 0

1 1 1 0

0 1 0 0

1 1 0 0 1 0 0 0

1 1 1 0

0 0 1 0

3

Combining Top Level with Sub Sets

Enables the simulation of caches of set sizes 16 to 4, and

associativities 4 and smaller. Total caches simulated: 12

Simulating Multiple Line Sizes

Different line lengths = shift line index in address

Disadvantage: need to re-run simulation for each different
line size.

Address = 0b00010110100

Set index for a set of size 16 lines, line length = 1 byte

Set index for a set of size 16 lines, line length = 2 bytes

Implementation in Altera Stratix IV FPGA

Simulator Characteristics on Altera Stratix IV FPGA

• Capable of simulating 308 cache configurations, of

which it can simulate 44 concurrently.

• Address consumption rate of 100MHz.

• Fully written in VHDL and easily parameterisable.

• Two buses – one for trace input, another for control.

Performance Comparison

At the time of writing the paper, no direct performance

comparison was possible. Simulator throughput was

compared with:

• DineroIV

• Cheetah

• SuSeSim

Example Use: Static Trace Simulation

Cache Sim

P
C

Ie

Example Use: In-System Implementation

Directly connected to soft-core processor

• Real time, real-input cache simulation

• Executes as fast as the system

Future Work

Multi-processor cache simulator.

Main Memory
Cache

Sim

CPU 1

CPU 2

Conclusions

• First hardware-based multiple cache simulator.

• Reduces hardware usage by utilising cache inclusion

properties.

• Allows for real-time, in-system cache simulation.

• Throughput up to 53x faster than one of the fastest

software-based cache simulators.

Thank You

