Predicting Circuit Aging Using Ring Oscillators

Deepashree Sengupta Sachin S. Sapatnekar Department of Electrical and Computer Engineering University of Minnesota

Introduction

• Predominant.

- Increases V_{th} , thus decreasing maximum frequency, f_{Max} of circuits.
- Aging in PMOS by negative BTI, in NMOS by Positive BTI.

Contribution

• Predict circuit aging using delay degradation data of on-chip ring oscillators (ROSC).

- ROSC degradation measured by beat frequencies with respect to a reference ROSC [Lu (IBM), IRPS13].
- Infer delay degradation of circuit under test (CUT) from ROSC.

Why ROSC ?

- Pros
 - Small and easily repeatable.
 - Easy to lay out.
 - Easy to measure $\Delta D_{ROSC}(t)$ using phase comparator as shown:

- Cons
 - Measuring ROSC is not equivalent to measuring CUT.
 - Needs calibration to be used as aging sensor.

Thus,
$$D(t) = D(t_0) + \frac{\partial g}{\partial V_{th}} |_{V_{th}(t_0)} Kh(\xi) (f(t) - f(t_0))$$

 $S = C$

What is *f*(*t*), *c*?

• f(t), c depend on aging mechanism:

BTI aging of critical paths

• Critical paths may change during lifetime.

• CUT delay: piecewise smooth curve.

Multiple critical paths crossover

Issues with ROSC based aging estimation

CUT delay approximated by analytical bound, called the Upperbound on f_{Max} (UofM) bound of delay.

 $D_{CUT}(t_0), D_{CUT}(t_f)$: by performing STA on CUT at t_0 and t_f .

 $f(t_0), f(t_f)$: computed analytically; $\xi = 0.95$ for both NBTI and PBTI.

 $\mathsf{ROSC:} D_{ROSC}(t) = D_{ROSC}(t_0) + k_{ROSC}(f(t) - f(t_0))$

CUT delay degradation from ROSC $\Delta D_{CUT}(t) = k_{CUT}(f(t) - f(t_0)); \Delta D_{ROSC}(t) = k_{ROSC}(f(t) - f(t_0))$ CUT Aging Aging $\frac{k_{CUT}}{\Delta D_{ROSC}}(t)$ $\Delta D_{CUT}(t)$ Degradation Ratio, DFeatures of *D*: Independent of t, T and V_{dd} .

CUT with one dominant critical path: true $\Delta D_{CUT}(t)$.

CUT with multiple critical paths: pessimistic $\Delta D_{CUT}(t)$.

Maximum pessimism in UofM bound

• Generate CUT with two paths:

➢ Path₁ ($C_{bot}(t)$): gates with minimum aging sensitivity, k_1 ➢ Path₂ ($C_{top}(t)$): gates with maximum aging sensitivity, k_2

• Adjust number of stages so that $\Delta_1 = \Delta_2$ (see figure).

Experimental setup

Gate functionalities	 INV, BUF, 2 & 3-input NAND, NOR, 3 & 4- input AOI: each X1, X2 and X4
Gate library	 NanGate 45nm Open Cell Library
Transistor model	 45nm Predictive Technology Model
Benchmark circuits	 ISCAS'89, ITC'99 synthesized in Synopsys Design Compiler
Machine used	 64-bit Ubuntu server (Intel

- RD Model of BTI aging: $f(t) = ct^{1/6}$
- Bound on maximum pessimism by *UofM* bound (E_{frac}): 3.59%
- Lifespan of CUT: 10 years (beyond 3 months of burn-in)

Degradation ratio for various CUTs

Temperature and V_{dd} independence

• Single \mathcal{D} for a CUT irrespective of operating conditions.

Conclusion

- BTI induced aging: signal probability dependent, captured by *UofM* bound.
- On-chip ROSC as aging sensor:

• Degradation ratio, *D* transforms ROSC aging to CUT aging.

• Single constant predicts aging at all operating conditions.

THANK YOU

