Statistically Sound Model Inference with Sparse Regression Statistical Verification of Analog Circuits under Process Variations

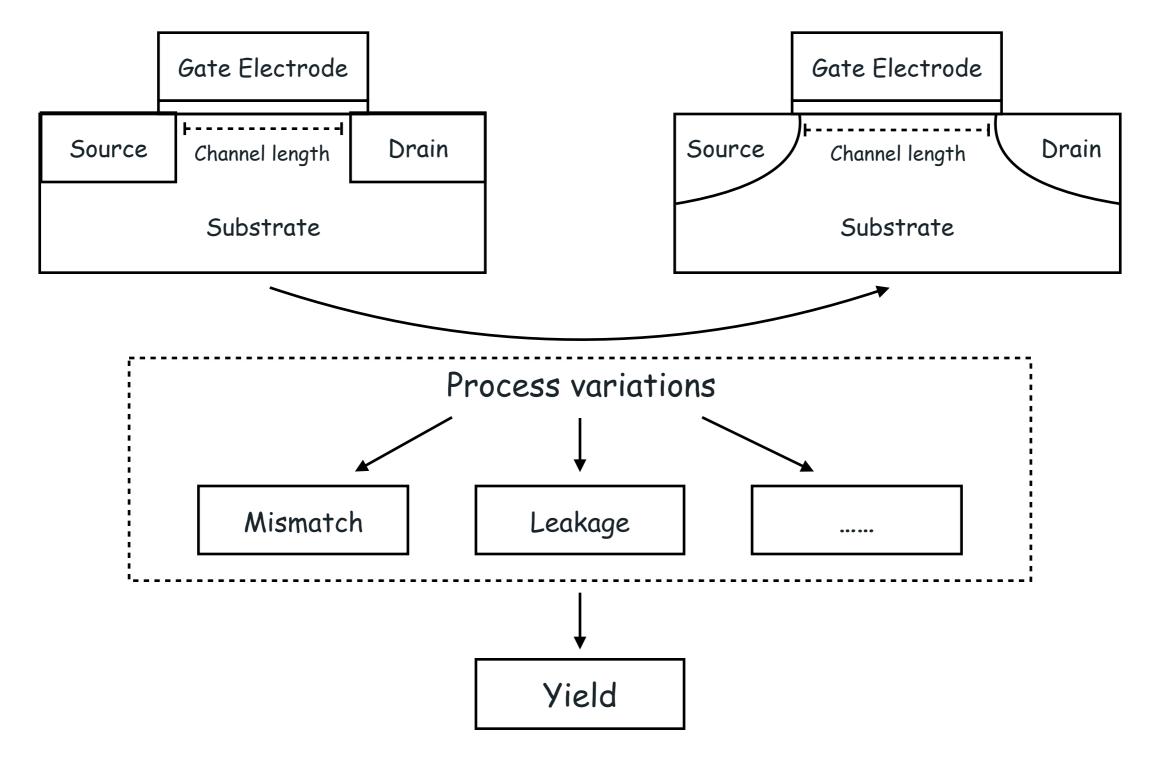
YAN ZHANG

Department of ECEE, University of Colorado at Boulder

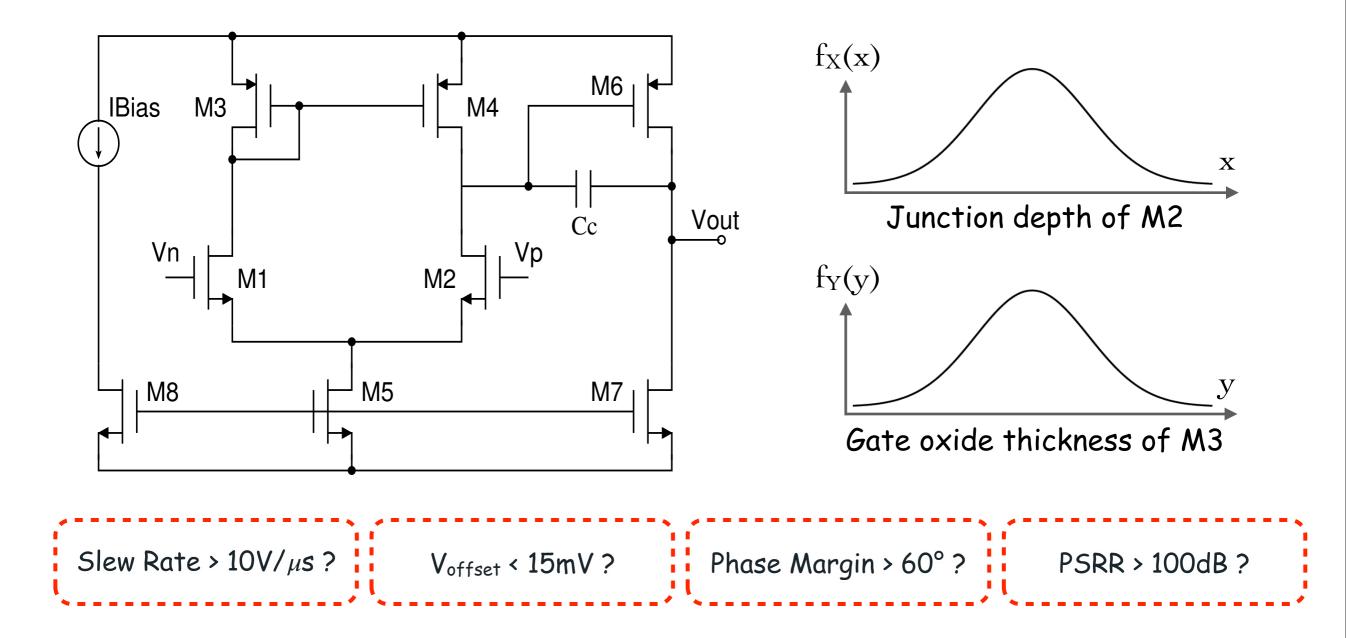
yan.zhang@colorado.edu

Coauthored with Sriram Sankaranarayanan and Fabio Somenzi

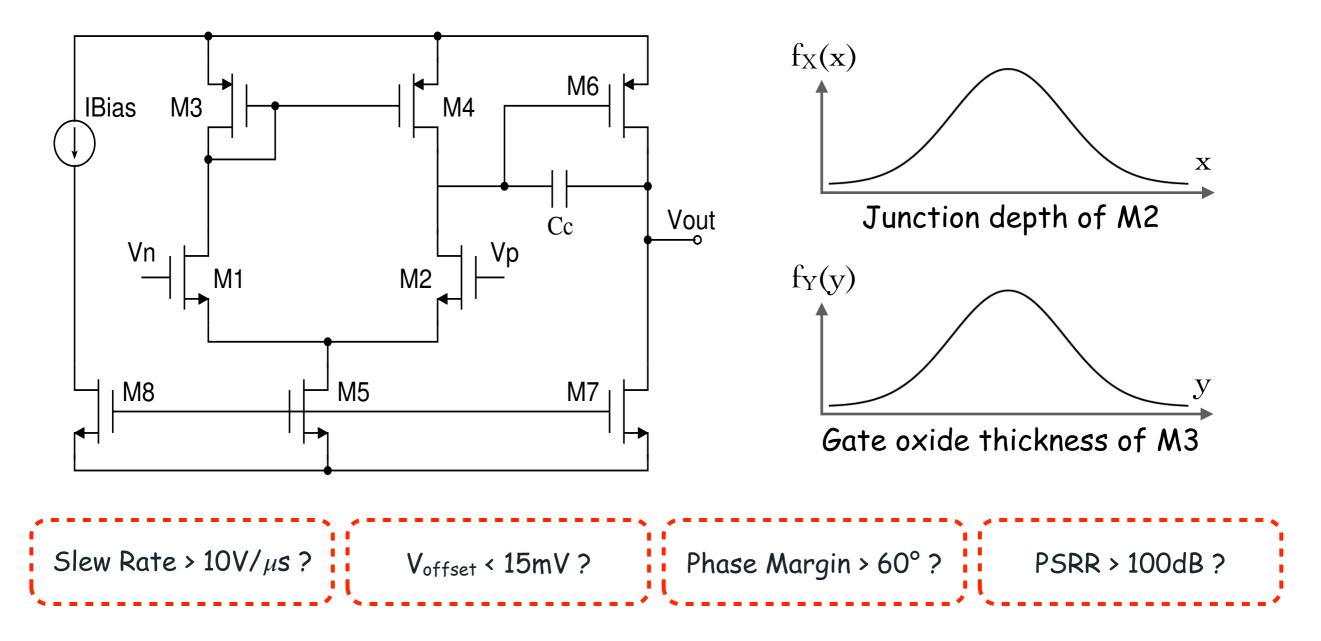
Process Variations



Verification under Process Variations



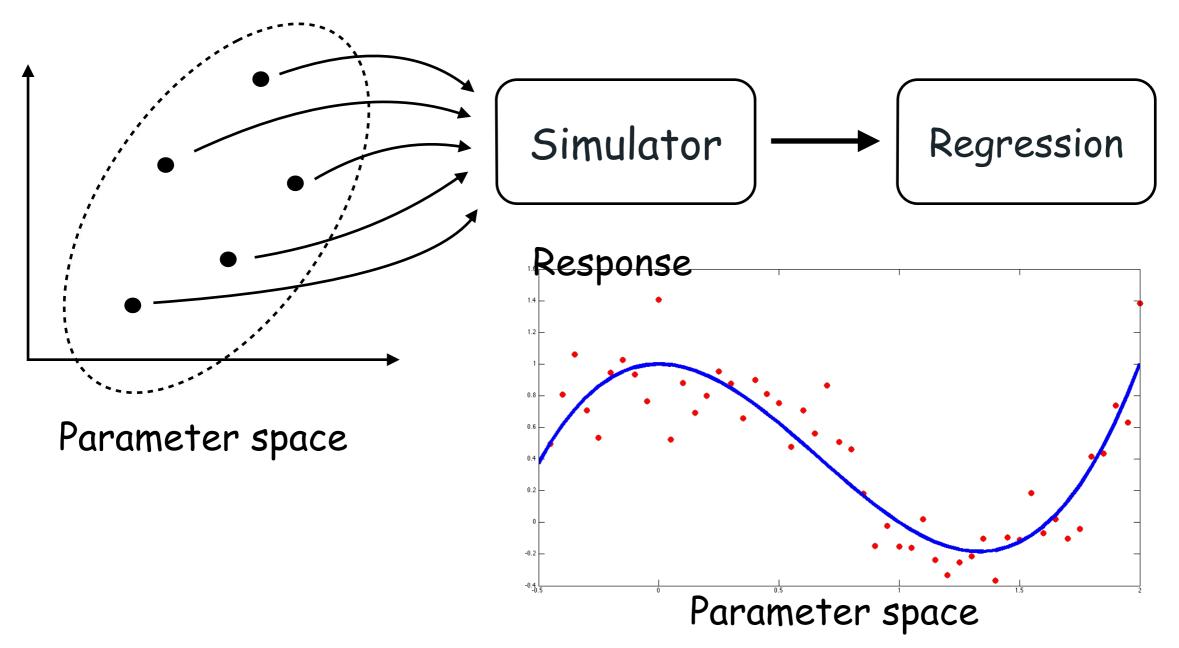
Verification under Process Variations



Model relationship between parameters and response

Performance Modeling

A model inference problem



OLS Regression

Ordinary Least Squares (OLS)

min
$$\Sigma_{i \in [1,m]} [y^{(i)} - f(x_1^{(i)}, x_2^{(i)}, ..., x_n^{(i)})]$$

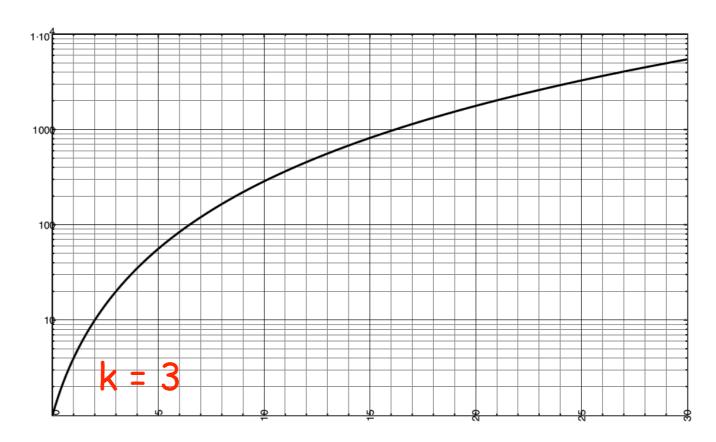
s.t.

f is a degree-k polynomial

Problem: Over-Fitting.

$$m \ge \binom{n+k}{k}$$

- \cdot m: # data points
- \cdot n: # parameters
- k: polynomial degree



OLS Regression

Ordinary Least Squares (OLS)

min
$$\Sigma_{i \in [1,m]} [y^{(i)} - f(x_1^{(i)}, x_2^{(i)}, ..., x_n^{(i)})]$$

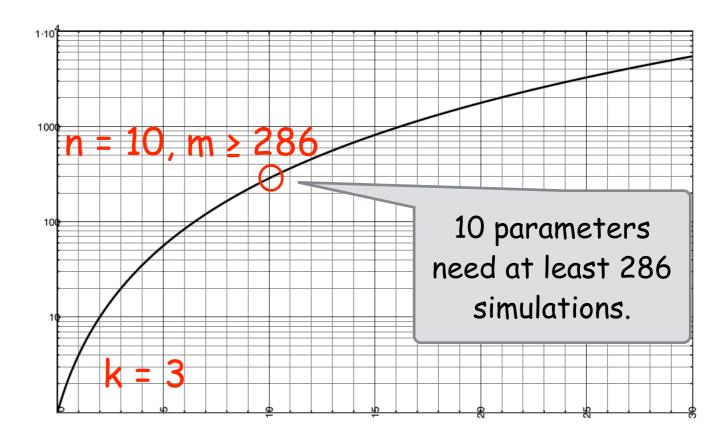
s.t.

f is a degree-k polynomial

Problem: Over-Fitting.

$$m \ge \binom{n+k}{k}$$

- \cdot m: # data points
- \cdot n: # parameters
- k: polynomial degree



OLS Regression

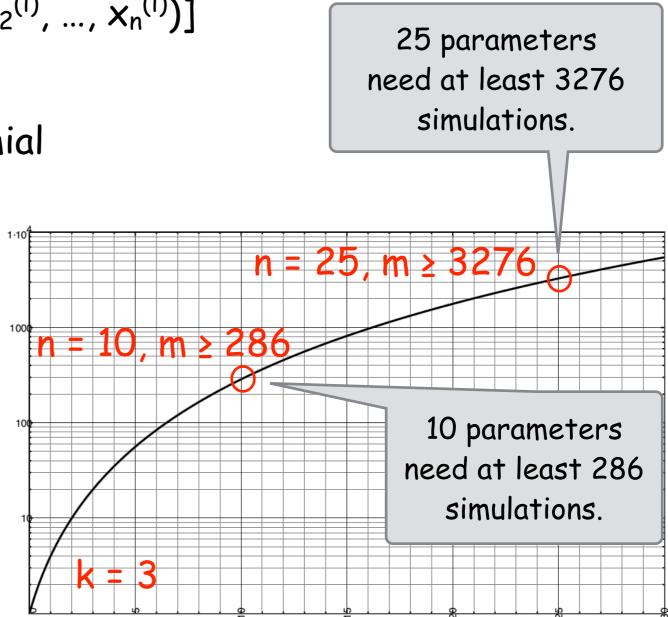
Ordinary Least Squares (OLS) min Σ_{i∈[1,m]} [y⁽ⁱ⁾ - f(x₁⁽ⁱ⁾, x₂⁽ⁱ⁾, ..., x_n⁽ⁱ⁾)] s.t.

f is a degree-k polynomial

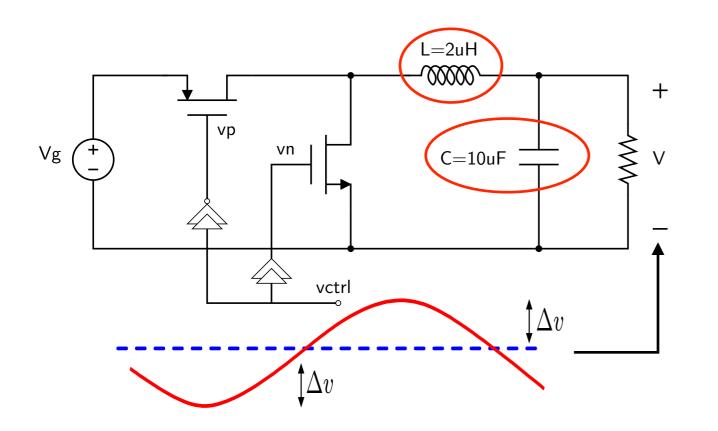
Problem: Over-Fitting.

$$m \ge \binom{n+k}{k}$$

- m: # data points
- n: # parameters
- k: polynomial degree



A Simple Buck Converter

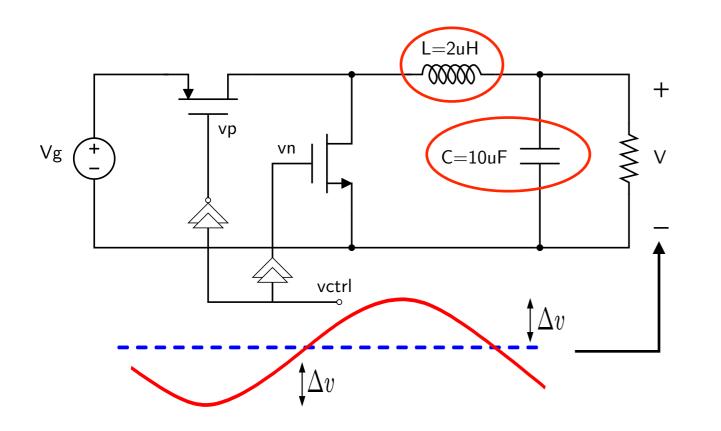


Process variations $L \sim U(1.8,2.2)\mu H, C \sim U(9,11)\mu F$ Specification $\Delta v \leq 30mV$

Regression using cubic polynomial

 $\Delta v \approx f(L,C) = c_{00} + c_{10}L + c_{01}C + c_{11}LC + ... + c_{30}L^3 + c_{03}C^3$

A Simple Buck Converter



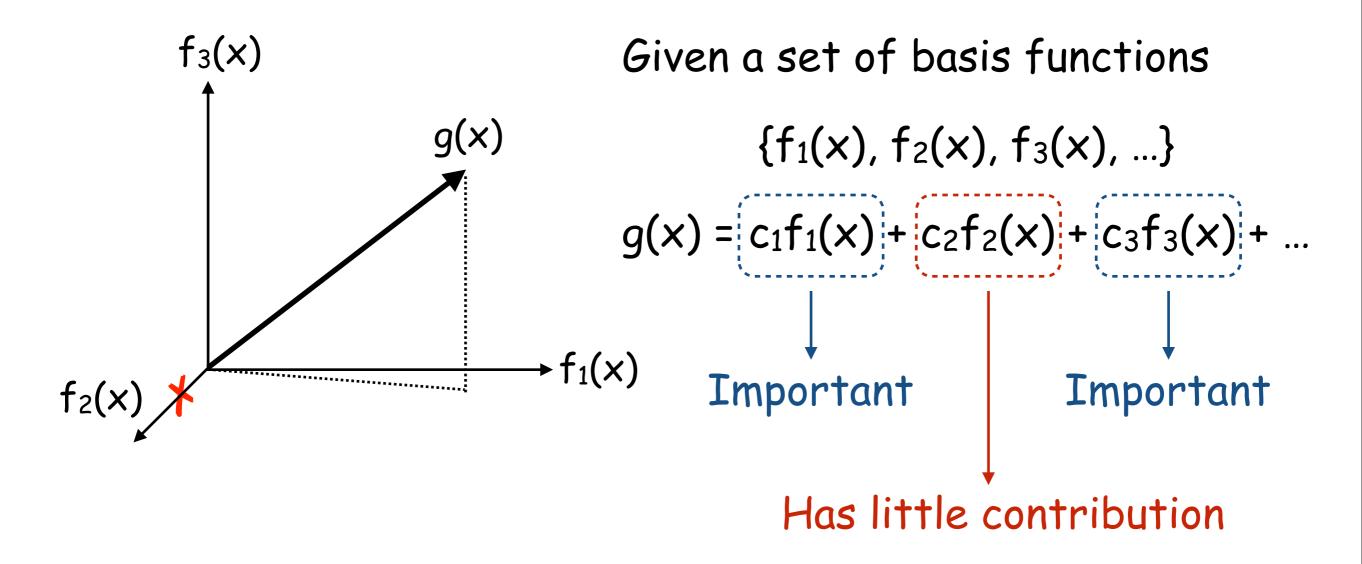
Process variations $L \sim U(1.8,2.2)\mu H, C \sim U(9,11)\mu F$ Specification $\Delta v \leq 30mV$

Regression using cubic polynomial

 $\Delta v \approx f(L,C) = c_{00} + c_{10}L + c_{01}C + c_{11}LC + ... + c_{30}L^3 + c_{03}C^3$

- Ordinary Least squares $\Delta v \approx 0.031 - 0.002L - 0.009C - 0.002L^2 - 0.005C^2 + 0.003LC + 0.004L^2C - 0.002LC^2 - 0.000L^3 + 0.010C^3$
- Proposed sparse method
 Δv ≈ 0.028 0.001L 0.001C

Sparse Regression



Sparsity = Predict and drop unimportant terms

Does Sparsity Alone Suffice?

Numerous techniques exist for sparse regression

- For example, LASSO, basis pursuit, etc.
- But is sparsity enough?

Which one of the following two models is better?

Model 1

$$c_{00} + c_{21}x^2y - c_{12}xy^2 + c_{30}x^3 - c_{04}y^4$$

Model 2

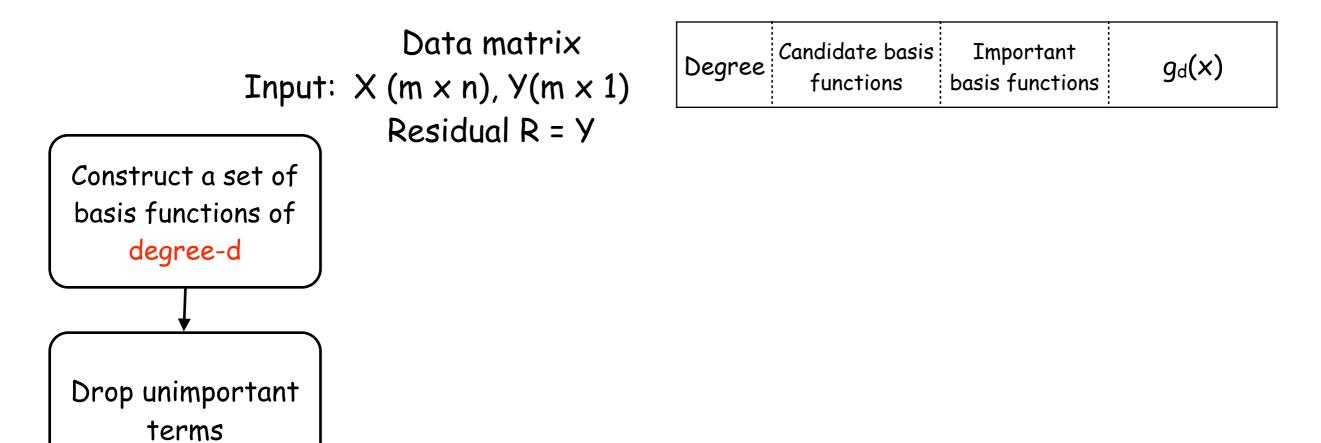
$$C_{00} - C_{10}X - C_{01}Y$$

Data matrix Input: X (m x n), Y(m x 1)

•		··//		• •	-)
	Resid	dual	R =	У	

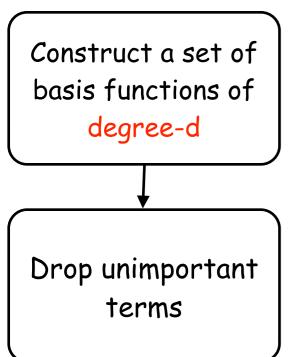
Degree $\begin{array}{c} Candidate \text{ basis Important} \\ functions \end{array}$ basis functions $g_d(x)$

Construct a set of basis functions of degree-d



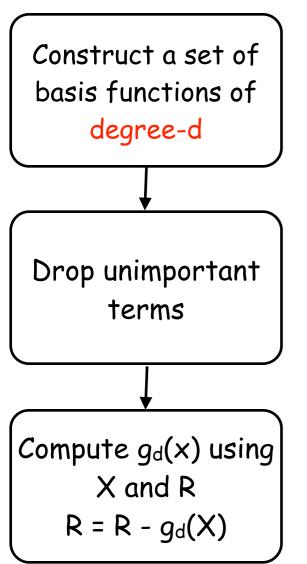
Data matrix Input: X (m x n), Y(m x 1) Residual R = Y

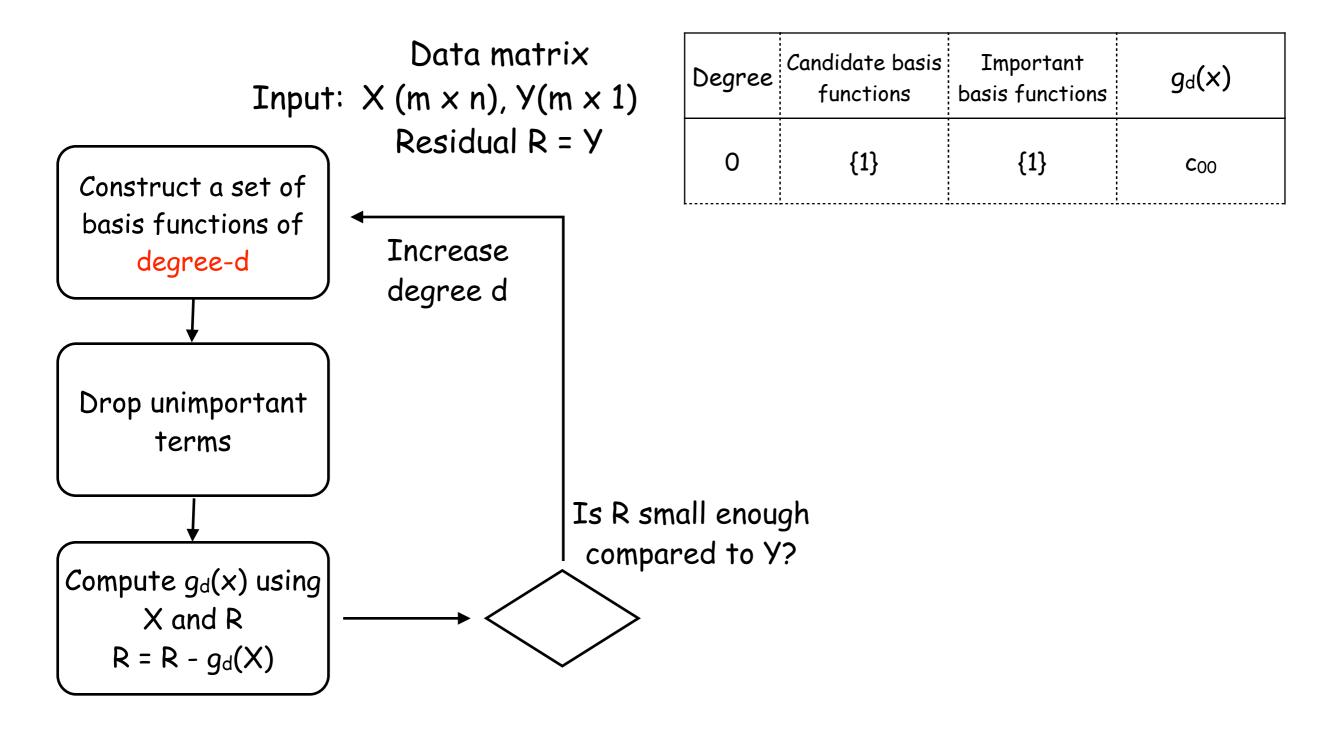
Degree	Candidate basis functions	Important basis functions	g _d (x)	
0	{1}	{1}	C 00	

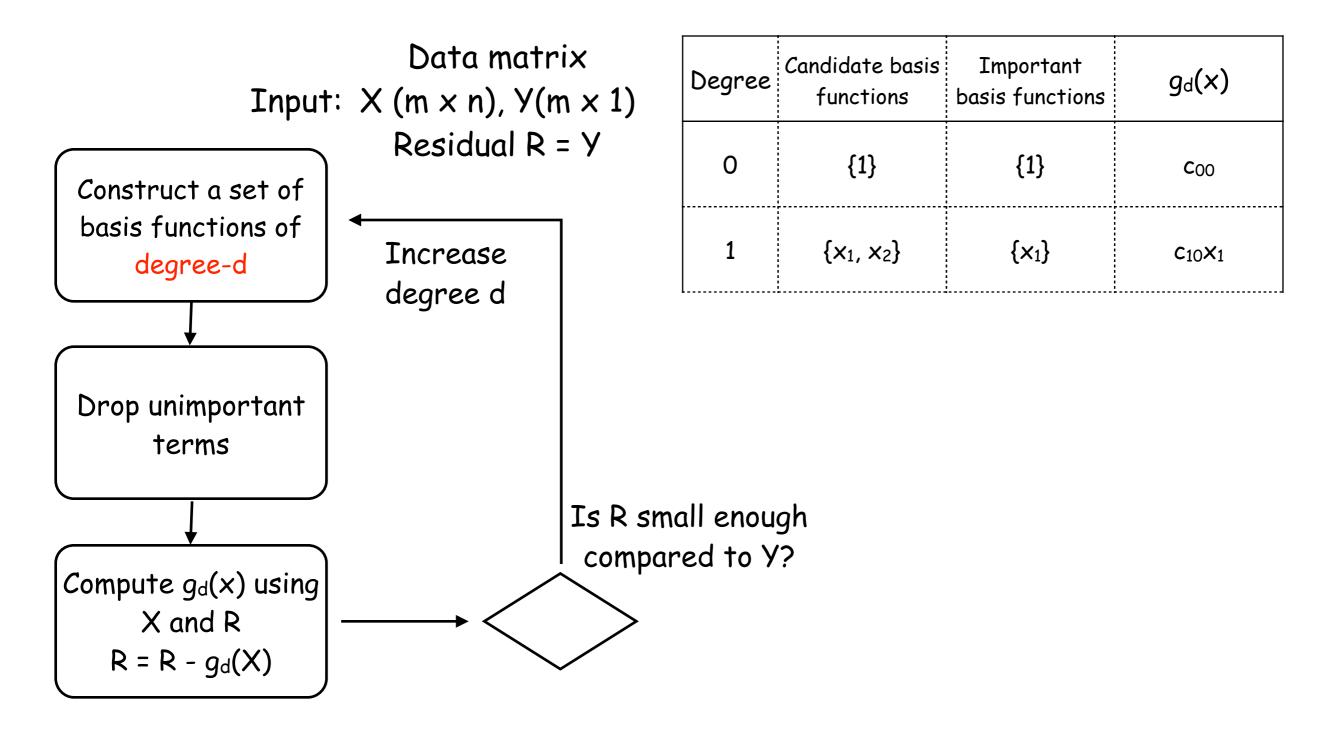


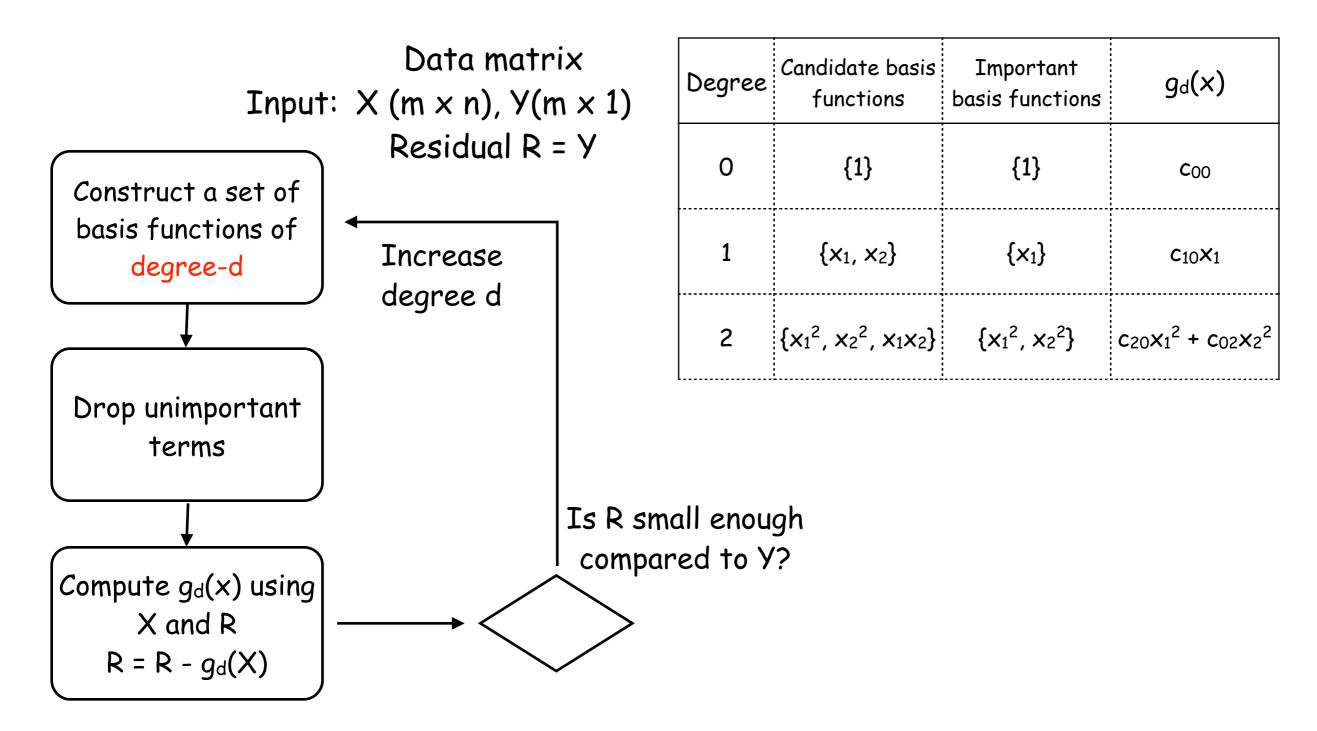
Data matrix Input: X (m x n), Y(m x 1) Residual R = Y

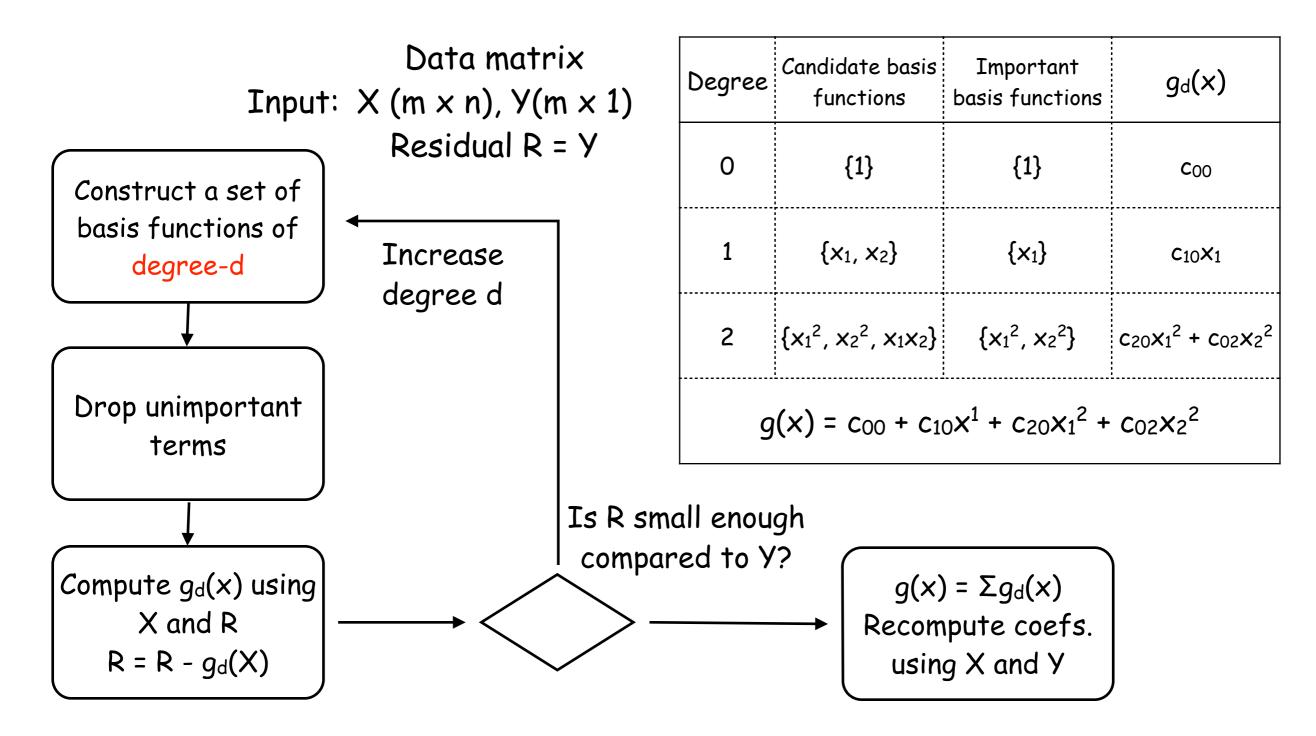
Degree	Candidate basis functions	Important basis functions	g _d (x)	
0	{1}	{1}	C 00	











Sparse Regression: Lower Degree Goes First

$g(x) = c_{00} + c_{10}x^{1} + c_{20}x_{1}^{2} + c_{02}x_{2}^{2}$

Degree	Candidate basis functions	Important basis functions	g _d (x)	
0	{1}	{1}	C 00	
1	{ x ₁ , x ₂ }	{x ₁ }	C ₁₀ X ₁	
2	${x_1^2, x_2^2, x_1x_2}$	$\{x_1^2, x_2^2\}$	$c_{20}x_1^2 + c_{02}x_2^2$	
		•••		

Sparse Regression: Lower Degree Goes First

$g(x) = c_{00} + c_{10}x^{1} + c_{20}x_{1}^{2} + c_{02}x_{2}^{2}$

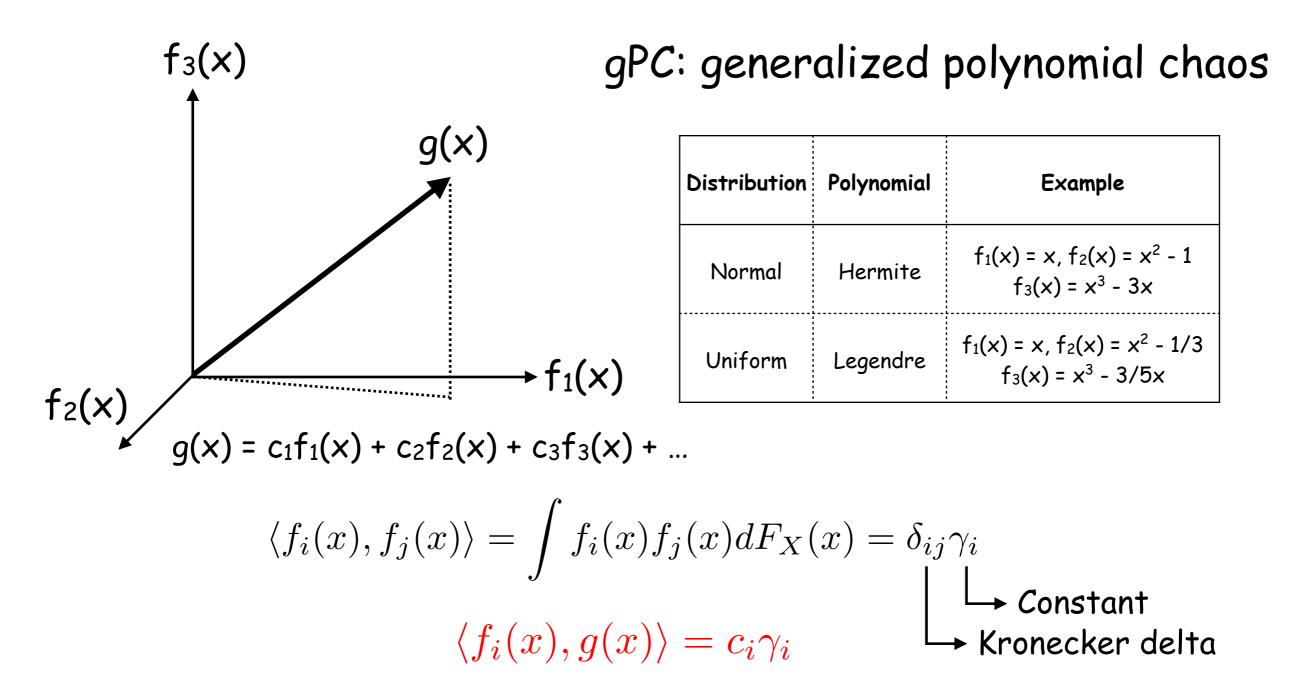
Degree	Candidate basis functions	Important basis functions	gd(x)			
0	{1}	{1}	C 00			
1	{ x ₁ , x ₂ }	{x ₁ }	C ₁₀ X ₁			
2	${x_1^2, x_2^2, x_1x_2}$	$\{x_1^2, x_2^2\}$	$C_{20}X_1^2 + C_{02}X_2^2$			
•••	•••					

Include higherdegree terms only when necessary

- Easier to interpret
- \cdot More efficient to

evaluate

Sparse Regression: Importance Estimation via gPC



* Xiu Numerical Methods for Stochastic Computation: A Spectral Method Approach '10

Sparse Regression: Importance Estimation via gPC

$$\langle f_i(x), g(x) \rangle = \int f_i(x)g(x)dF_X(x)$$

— Impossible b/c analytical form of g(x) is unknown

 $\left(x^{(1)},\ldots,x^{(N)}\right) \sim F_X(x)$

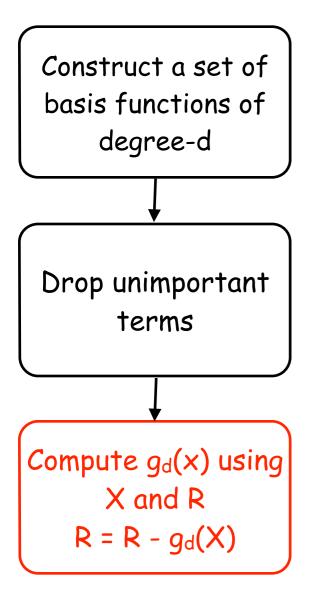
Estimation of ci via Monte-Carlo sampling

$$\int f_i(x)g(x)dF_X(x) \approx \sum_{j=1}^N f_i(x^{(j)})g(x^{(j)})$$
$$c_i \approx \hat{c}_i = \frac{1}{\gamma_i} \sum_{j=1}^N f_i(x^{(j)})g(x^{(j)})$$

Use the estimation to drop terms if

 $\hat{c}_i \leq \alpha \max(\hat{c}_1, \hat{c}_2, \dots)$

Sparse Regression: Single Degree Approximation



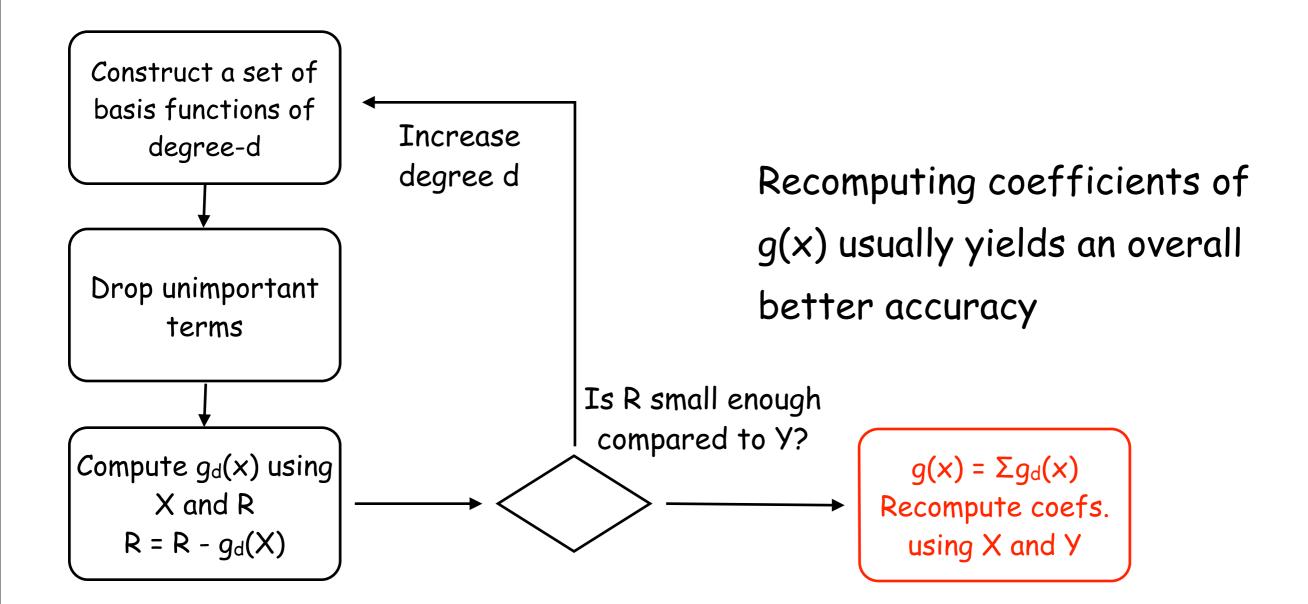
Estimated coefficients are not accurate enough Use regression to improve accuracy, i.e.,

min
$$\Sigma_{i \in [1,m]} (y^{(i)} - g_2(x_1^{(i)}, x_2^{(i)}))$$

s.t.
 $g_2(x) = c_{20}x_1^2 + c_{02}x_2^2$

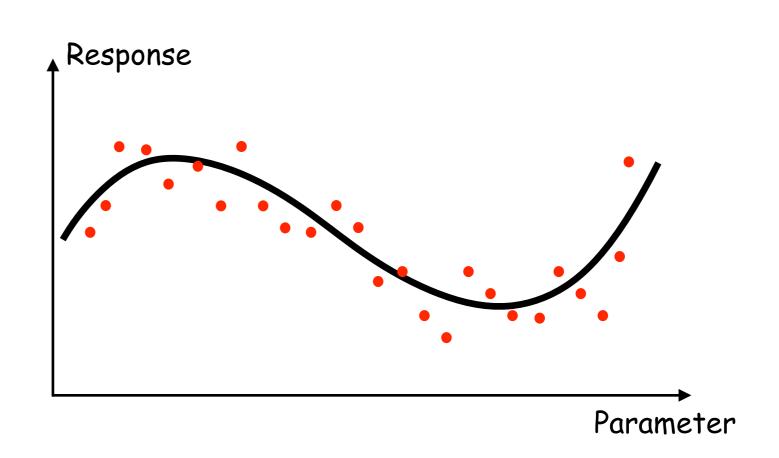
- OLS if there are enough data to avoid over-fitting
- Otherwise, use L1 regularization, e.g., LASSO

Sparse Regression: Final Approximation



Application: Statistically Sound Model Inference

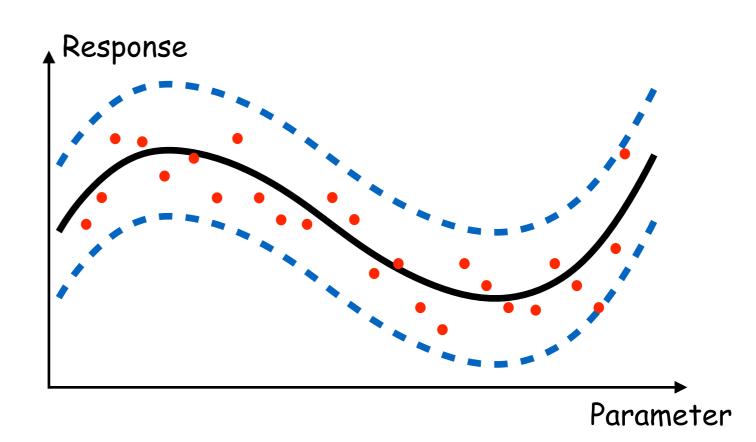
- · A simulation-based model inference technique
- Used for statistical verification of analog circuits
- Three phases
 - 1. Regression
 - 2. Bloating
 - 3. Verification



* Zhang et al. *ICCAD*'13

Application: Statistically Sound Model Inference

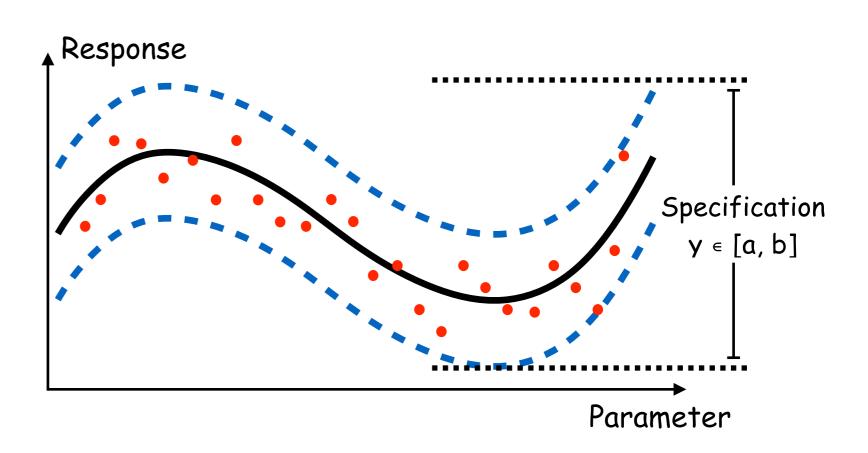
- A simulation-based model inference technique
- Used for statistical verification of analog circuits
- Three phases
 - 1. Regression
 - 2. Bloating
 - 3. Verification



* Zhang et al. *ICCAD*'13

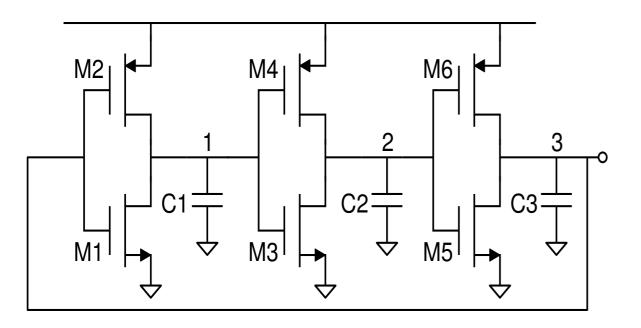
Application: Statistically Sound Model Inference

- · A simulation-based model inference technique
- Used for statistical verification of analog circuits
- Three phases
 - 1. Regression
 - 2. Bloating
 - 3. Verification



* Zhang et al. *ICCAD*'13

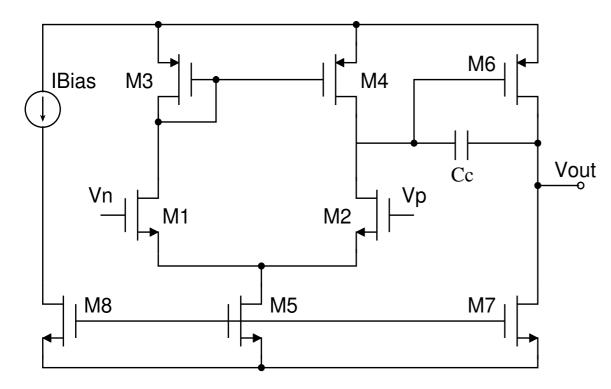
Experimental Results



Process variations 24 normally distributed parameters Specification fosc = 0.98GHz ± 50MHz

10 ⁴ -MC	SMI (Degree-3 poly)			Sparse-SMI			
Yield	#Sims	SMI Time	Predicted Yield	#Sims	SMI Time	Degree	Predicted Yield
51%	3213	408s	46%	397	19s	3	45%

Experimental Results



Process variations

32 normally distributed parameters

Specification

- 1. $V_{os} \leq 50 mV$
- 2. DC-Gain ≥ 60dB
- 3. Bandwidth \geq 5MHz

10 ⁴ -MC	SMI (Degree-3 poly)			Sparse-SMI			
Yield	#Sims	SMI Time	Predicted Yield	#Sims	SMI Time	Degree	Predicted Yield
61%	8701	4.2h	58%	393	8s	1	58%
65%	8618	4.9h	61%	380	101s	3	60%
100%	8741	5.1h	100%	361	7s	1	100%

Conclusion

- A sparse regression algorithm based on gPC
 - Use limited data to fit response surfaces with many parameters
 - Produce low-degree approximation
- Applied to our statistically sound model inference framework