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SRAM Robustness Optimization

« Stability verification and robustness optimization become
hard for SRAM circuits

— Process variations, mismatch among transistors cause
failures at advanced nodes

« Static noise margin (SNM): overestimates read failure and
underestimates write failure

* Dynamic stability margin is adopted by deploying critical
word-line pulse-width
— How to verify and optimize?

31 Januar y 2014 3



Previous Work of SRAM Verification
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in parameter space*?

Confined in 2-D space, i.e. only two parameters considered.

*1W. Dong and et.al. ICCAD, 2008
*2 G M Huanag and et.al. IEEE Int. BMAS Workshop, 2007
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Write Failure Analysis by Safety Distance

* Initial state (v1,v2) = (vdd, 0)
» Target state (v1, v2) = (0, vdd)
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Threshold voltage variation
causes difficulty to move
state point to the target state.

between the operating and the safe state region.

Safety Distance is the Euclidean distance in the state space



Read Failure Analysis by Safety Distance
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SRAM Nonlinear Dynamics

* Nonlinear dynamics of SRAM can be defined as

d
aq(x(t), t) + f(x(t),t) + u(t) = 0.

- Ba ean- theare ) at neighborhood of the nominal
poir Charges State vector || Input yoqr gpproximation with 29 order
residue as

52
jq(x t) + f(x*, t)+u(t)+G(x—x)+\\(x—x)T f|x€ (x —x*)E 0.

Linearization error

« Assuming q(x,t) can be decomposed

d
(a glx*t)+ f(x" ) +u"(t) =0

d
—CAx+GAx+L =0
dt

dq of
C_alxx G_alxx
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SRAM Verification by Reachability Analysis

State-variable space

Separatrix « Fast verification of SRAM
nonlinear dynamics by
reachability analysis
 Variations from multiple
sources considered at the
same time

 For example, transconductance
of multiple transistors
considering variation in their
widths can be added as follows

trajectory
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Reachability Analysis: Unidirectional Zonotope
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Reachability Analysis with Uncertain Parameters

Eq(x )+ (M e)+ut(t) = Oﬁ SPICE-like simulator

d
\ ECM +GAx+L=0 -l Backward Euler method

« Backward Euler method with discretized time-step h at k-th iteration by

. cC .
’ Ax W) = A_l(zx(l)kq — L)

; : C
Euclidean distance A= . LG
» Considering all parameter variations as zonotope, linear Multi-step

integration for reachability analysis
C
Xy = Jl_l(sz_l — Lg)

Xi = [Ax @, ..., Ax, (™ [ Zonotope generator matrix
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Reachability Analysis with Uncertain Parameters

« Parameter variations can be considered by the interval matrix A which
IS represented by a matrix zonotope.

« Zonotope matrix represented in terms of interval-valued matrices as

2(0) _ Z|A<i)| A Z|A(i)|

i i
in which each matrix zonotope generator A®) contains the variation

range of a parameter. = 94©

40 — AW D = Ac®
oW

* The inverse of A width variations is approximated as follows

A= ((AO) 7 (AO) A (a©) )

A€

Inverse of A is computed by LU decomposition
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SRAM Robustness Optimization Problem

« Optimization of SRAM dynamic
stability is modeled as a minimum
value problem.

BL BR
min F(w)
S.T. Wmin < Wi < Wmax
_ _ Due to symmetric structure,
Safety distance for write Pulse width W e p3xi

operation

D, (w,t,) + D,-(w,t,), write and read failures
Flw) = D,,(w,t,), only write failure
D.(w,t,), only read failure

Safety distance for read operation
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Large-signal Sensitivity of Safety Distance
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Reliability Optimization with Sensitivity of Safety

Distance
« Based on the calculated sensitivity, optimization is performed

* Increment of parameter vector in direction of optimization is

Awy = BrPk  the gradient of obj. function

« Suppose gradient is constant in the state-variable space:

F(Wi, t) + AWyyq' i = 0

F(Wkr t)
Pk’ P
» Virtually gradient decreases as safety distance becomes smaller. In
other words, gradient should be smaller in the next search step.

F(wg,t)
PrT Pk

,Bk+1 -

ﬁk+1=_y 70<y<1

Use empirical factor y to modulate step size.
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SRAM Robustness Optimization Flow

k=0

Set initial state, interval parameters and Av,, .
Set max. number of optimization cycles as max_cycle.

)

Run reachability analysis.

<

'

Derive sensitivity of safety distance
w.r.t. multiple parameters

v

Compute increment of parameter
vector Aw, = S, o, .
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Experimental Results
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Optimization of Read Failure
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Optimization of Write Failure

1

0.9

0.8

0.7

0.6

> 0.5

0.4

0.3

0.2

0.1

31 January 2014

1381, 440, 497]nm

optimized
trajectory

/

[400, 500, 350]nm

initial

=
.
S
I

optimization ~ s,
direction |

write
~  failure

N\

messs trajectory

mmmm rcachable set

0
0.2

0.3 0.4 0.5 0.6

18



Optimization of Read + Write Failure
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Yield Before and After Optimization
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 Verify yield rate before and
after optimization by Monte
Carlo with 1000 samples.

31 January 2014

N .
Yield rate = 1 — —L2ure

Ntotal

* Yield rate is improved from

6.8% t0 99.957%.
N m— WT1te
= rcad
\\\\\ \\
\ \ Read

.............
0 e

failure

Write operation
is optimized at
the expense of
read operation.

01 02 03 04 05 06 07 08 09 1



Optimization with Small-signal Sensitivity
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Runtime Comparison

Transistor
widths (nm)
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Summary

* Formulated SRAM dynamic stability verification and
optimization problem

* Proposed large-signal sensitivity of safety distance in
the state space by reachability analysis

* Significantly improved SRAM yield rate in presence
of parameter variations
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Please send comments to haoyu@ntu.edu.sg
http://www.ntucmosetgp.net
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