Qubit Placement to Minimize Communication Overhead in 2D Quantum Architectures

Alireza Shafaei, Mehdi Saeedi, Massoud Pedram
Department of Electrical Engineering
University of Southern California

Supported by the IARPA Quantum Computer Science Program
Outline

- Introduction
 - Quantum Computing Technologies
- Geometric Constraints
 - Nearest Neighbor Architectures
- Proposed Solution
 - MIP-based Qubit Placement
 - Force-directed Qubit Placement
- Results
- Conclusion
Quantum Computing

- **Motivation: Faster Algorithms**
 - Shor’s factoring algorithm (Superpolynomial)
 - Grover’s search algorithm (Polynomial)
 - Quantum walk on binary welded trees (Superpolynomial)
 - Pell's equation (Superpolynomial)
 - Formula evaluation (Polynomial)

- **Representation**

 Quantum Algorithm → Quantum Circuit → Physical Realization (PMD)

 PMD: Physical Machine Description

[Link to NIST Quantum Zoo](http://math.nist.gov/quantum/zoo/)
Quantum Circuits

- **Qubits**
 - Data is carried by quantum bits or qubits
 - Physical objects are ions, photons, etc.

- **Quantum Gates**
 - Single-qubit: H (Hadamard), X (NOT)
 - Two-qubit: CNOT (Controlled NOT), SWAP

- **Quantum Circuit**
Quantum PMDs

- **Move-based PMDs**
 - Explicit move instruction
 - There are routing channels for qubit routing
 - Examples: Ion-Trap, Photonics, Neutral Atoms

- **SWAP-based PMDs**
 - No move instruction
 - There are no routing channels
 - Qubit routing via SWAP gate insertion
 - Examples: Quantum Dot, Superconducting

- Focus of this presentation is on **SWAP-based PMDs**
Geometric Constraints

- **Limited Interaction Distance**
 - Adjacent qubits can be involved in a two-qubit gate
 - Nearest neighbor architectures

- **Route distant qubits to make them adjacent**
 - Move-based: MOVE instruction
 - SWAP-based: insert SWAP gates
SWAP-based PMDs

- **SWAP insertion**
 - **Objective**
 - Ensure that all two-qubit gates perform local operations (on adjacent qubits)
 - **Side effects**
 - More gates, and hence more area
 - Higher logic depth, and thus higher latency and higher error rate
 - Minimize the number of SWAP gates by placing frequently interacting qubits as close as possible on the fabric
 - This paper: MIP-based qubit placement
 - Future work: Force-directed qubit placement (a more scalable solution)

MIP: Mixed Integer Programming
Example on Quantum Dot

- Simple qubit placement: place qubits considering only their immediate interactions and ignoring their future interactions.

Two SWAP gates
Example on Quantum Dot (cont’d)

- Improved qubit placement: place qubits by considering their future interactions

No SWAP gate
Qubit Placement

- Assign each qubit to a location on the 2D grid such that frequently interacting qubits are placed close to one another

\(x_{iw} \): assignment of \(q_i \) to location \(w \)

\(x_{jv} \): assignment of \(q_j \) to location \(v \)

\(m_{ij} \): number of 2-qubit gates working on \(q_i \) and \(q_j \)

\(\text{dist}_{wv} \): Manhattan distance between locations \(w \) and \(v \)

\(c_{iwjv} = m_{ij} \times \text{dist}_{wv} \)

\[
\text{Min} \quad \sum_{i=1}^{n} \sum_{w=1}^{n} \sum_{j=1}^{n} \sum_{v=1}^{n} c_{iwjv} x_{iw} x_{jv}
\]

subject to

\[
\sum_{w=1}^{n} x_{iw} = 1, \quad i = 1, \ldots, n, \\
\sum_{i=1}^{n} x_{iw} = 1, \quad w = 1, \ldots, n, \\
x_{iw} \in \{0, 1\}, \quad i, w = 1, \ldots, n.
\]
Kaufmann and Broeckx’s Linearization

\[\alpha_{iw} = \sum_{j=1}^{n} \sum_{v=1}^{n} c_{iwjv}, \quad i, w = 1, \ldots, n \]

\[z_{iw} = x_{iw} \sum_{j=1}^{n} \sum_{v=1}^{n} c_{iwjv} x_{jv}, \quad i, w = 1, \ldots, n \]

\[
\begin{align*}
\text{Min} & \quad \sum_{i=1}^{n} \sum_{w=1}^{n} z_{iw} \\
\text{subject to} & \quad \sum_{w=1}^{n} x_{iw} = 1, \quad i = 1, \ldots, n, \\
& \quad \sum_{i=1}^{n} x_{iw} = 1, \quad w = 1, \ldots, n, \\
& \quad \alpha_{iw} x_{iw} + \sum_{j=1}^{n} \sum_{v=1}^{n} c_{iwjv} x_{jv} - z_{iw} \leq \alpha_{iw}, \quad i, w = 1, \ldots, n, \\
& \quad x_{iw} \in \{0, 1\}, \quad i, w = 1, \ldots, n, \\
& \quad z_{iw} \geq 0, \quad i, w = 1, \ldots, n.
\end{align*}
\]

\(n^2 \) binary variables \((x_{iw})\), \(n^2 \) real variables \((z_{iw})\), and \(n^2 + 2n \) constraints

MIP Optimization Framework

- GUROBI Optimizer 5.5 (http://www.gurobi.com)
 - Commercial solver with parallel algorithms for large-scale linear, quadratic, and mixed-integer programs (free for academic use)
 - Uses linear-programming relaxation techniques along with other heuristics in order to quickly solve large-scale MIP problems

- Qubit placement (the MIP formulation) does not guarantee that all two-qubit gates become localized; Instead, it ensures the placement of qubits such that the frequently interact qubits are as close as possible to one another
 - SWAP insertion
SWAP Insertion

CNOT 1, 2
CNOT 5, 8
CNOT 3, 7
CNOT 2, 4
CNOT 6, 8
CNOT 1, 3
CNOT 2, 6

CNOT 1, 2
CNOT 5, 8
CNOT 3, 7
SWAP 2, 7
SWAP 2, 3
CNOT 2, 4
CNOT 6, 8
CNOT 1, 3
CNOT 2, 6

CNOT 1, 2
CNOT 5, 8
CNOT 3, 7
SWAP 2, 7
SWAP 2, 3
CNOT 2, 4
CNOT 6, 8
SWAP 1, 2
CNOT 1, 3
CNOT 2, 6
Solution Improvement (1)

- Two qubits may interact with one another at different times
 - Not satisfactorily captured by a global qubit placer
 - Solution: Partition the circuit into k sub-circuits (S_1, \ldots, S_k)

(1) The placement tool finds initial qubit placements (P^i).

(2) A SWAP insertion block generates final qubit placements (P^f) by inserting *intra-set* SWAP gates.

(3) A swapping network inserts *inter-set* SWAP gates to change the final placement of S_j to the initial placement of S_{j+1} as generated by the qubit placer.
Solution Improvement (2)

- In the previous solution, P_j^f is obtained without considering P_{j+1}^i, for $j \geq 2$
- Large swapping networks
- Objective function of (1) only minimizes the intra-set communication distances
- Solution: Add a new term to the objective function in order to capture inter-set communication distances

$q_{i,s}$: qubit i in sub-circuit s

$x_{i,w}^s$: assignment of $q_{i,s}$ to location w

$x_{j,v}^s$: assignment of $q_{j,s}$ to location v

m_{ij}^s: number of 2-qubit gates working on $q_{i,s}$ and $q_{j,s}$
Improved Qubit Placement

Intra-set communication distance

\[
\begin{align*}
\text{Min} & \quad \sum_{s=1}^{k} \sum_{i=1}^{n} \sum_{w=1}^{n} \sum_{j=1}^{n} \sum_{v=1}^{n} m_{ij}^{s} \text{dist}_{wv} x_{iw}^{s} x_{jv}^{s} + \\
& \quad \sum_{s=1}^{k} \sum_{i=1}^{n} \sum_{w=1}^{n} \sum_{v=1}^{n} \text{dist}_{wv} x_{iw}^{s} x_{jv}^{s+1}
\end{align*}
\]

subject to

\[
\begin{align*}
\sum_{w=1}^{n} x_{iw} &= 1, \quad i = 1, \ldots, n, \\
\sum_{i=1}^{n} x_{iw} &= 1, \quad w = 1, \ldots, n, \\
x_{iw} &\in \{0, 1\}, \quad i, w = 1, \ldots, n.
\end{align*}
\]

Inter-set communication distance

Intra-set communication distance

Inter-set communication distance
Force-directed Qubit Placement

- **Attractive forces**
 - A force proportional to m_{ij}^s between $q_{i,s}$ and $q_{j,s}$.
 - A (unit) force between between $q_{i,s}$ and $q_{i,s+1}$.
- Can be solved by quadratic programming
Results (1)

<table>
<thead>
<tr>
<th># of qubits</th>
<th># of gates</th>
<th>Grid Size</th>
<th>#SWAPs</th>
<th>#SWAPs</th>
<th>Imp. (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3_17</td>
<td>3</td>
<td>2x2</td>
<td>6</td>
<td>4</td>
<td>-50</td>
<td>[1]</td>
</tr>
<tr>
<td>4_49</td>
<td>4</td>
<td>2x2</td>
<td>13</td>
<td>12</td>
<td>-8</td>
<td>[1]</td>
</tr>
<tr>
<td>4gt10</td>
<td>5</td>
<td>3x2</td>
<td>16</td>
<td>20</td>
<td>20</td>
<td>[1]</td>
</tr>
<tr>
<td>4gt11</td>
<td>5</td>
<td>2x3</td>
<td>2</td>
<td>1</td>
<td>-100</td>
<td>[1]</td>
</tr>
<tr>
<td>4gt12</td>
<td>5</td>
<td>3x2</td>
<td>19</td>
<td>35</td>
<td>46</td>
<td>[1]</td>
</tr>
<tr>
<td>4gt13</td>
<td>5</td>
<td>3x3</td>
<td>2</td>
<td>6</td>
<td>67</td>
<td>[1]</td>
</tr>
<tr>
<td>4gt4</td>
<td>5</td>
<td>2x3</td>
<td>17</td>
<td>34</td>
<td>50</td>
<td>[1]</td>
</tr>
<tr>
<td>4gt5</td>
<td>5</td>
<td>3x3</td>
<td>8</td>
<td>12</td>
<td>33</td>
<td>[1]</td>
</tr>
<tr>
<td>4mod5</td>
<td>5</td>
<td>2x3</td>
<td>11</td>
<td>9</td>
<td>-22</td>
<td>[1]</td>
</tr>
<tr>
<td>4mod7</td>
<td>5</td>
<td>3x3</td>
<td>13</td>
<td>21</td>
<td>38</td>
<td>[1]</td>
</tr>
<tr>
<td>aj-e11</td>
<td>4</td>
<td>2x3</td>
<td>24</td>
<td>36</td>
<td>33</td>
<td>[1]</td>
</tr>
<tr>
<td>alu</td>
<td>5</td>
<td>2x3</td>
<td>10</td>
<td>18</td>
<td>44</td>
<td>[1]</td>
</tr>
<tr>
<td>decod24</td>
<td>4</td>
<td>2x2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>[1]</td>
</tr>
<tr>
<td>ham7</td>
<td>7</td>
<td>3x3</td>
<td>48</td>
<td>68</td>
<td>29</td>
<td>[1]</td>
</tr>
<tr>
<td>hwb4</td>
<td>4</td>
<td>3x3</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>[1]</td>
</tr>
<tr>
<td>hwb5</td>
<td>5</td>
<td>3x2</td>
<td>45</td>
<td>63</td>
<td>29</td>
<td>[1]</td>
</tr>
<tr>
<td>hwb6</td>
<td>6</td>
<td>2x3</td>
<td>79</td>
<td>118</td>
<td>33</td>
<td>[1]</td>
</tr>
<tr>
<td>hwb7</td>
<td>7</td>
<td>3x3</td>
<td>1688</td>
<td>2228</td>
<td>24</td>
<td>[1]</td>
</tr>
<tr>
<td>hwb8</td>
<td>8</td>
<td>3x3</td>
<td>11027</td>
<td>14361</td>
<td>23</td>
<td>[1]</td>
</tr>
<tr>
<td>hwb9</td>
<td>9</td>
<td>4x3</td>
<td>15022</td>
<td>21166</td>
<td>29</td>
<td>[1]</td>
</tr>
<tr>
<td>mod5adder</td>
<td>6</td>
<td>3x2</td>
<td>41</td>
<td>51</td>
<td>20</td>
<td>[1]</td>
</tr>
<tr>
<td>mod8-10</td>
<td>5</td>
<td>3x3</td>
<td>45</td>
<td>72</td>
<td>38</td>
<td>[1]</td>
</tr>
<tr>
<td>rd32</td>
<td>4</td>
<td>2x3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>[1]</td>
</tr>
<tr>
<td>rd53</td>
<td>7</td>
<td>5x2</td>
<td>39</td>
<td>66</td>
<td>41</td>
<td>[1]</td>
</tr>
<tr>
<td>rd73</td>
<td>10</td>
<td>4x4</td>
<td>37</td>
<td>56</td>
<td>34</td>
<td>[1]</td>
</tr>
</tbody>
</table>
Results (2)

<table>
<thead>
<tr>
<th></th>
<th># of qubits</th>
<th># of gates</th>
<th>Grid Size</th>
<th>#SWAPs</th>
<th>#SWAPs</th>
<th>Imp. (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>sym9</td>
<td>10</td>
<td>4452</td>
<td>4x4</td>
<td>2363</td>
<td>3415</td>
<td>31</td>
<td>[1]</td>
</tr>
<tr>
<td>sys6</td>
<td>10</td>
<td>62</td>
<td>4x4</td>
<td>31</td>
<td>59</td>
<td>47</td>
<td>[1]</td>
</tr>
<tr>
<td>urf1</td>
<td>9</td>
<td>57770</td>
<td>3x3</td>
<td>38555</td>
<td>44072</td>
<td>13</td>
<td>[1]</td>
</tr>
<tr>
<td>urf2</td>
<td>8</td>
<td>25150</td>
<td>2x4</td>
<td>16822</td>
<td>17670</td>
<td>5</td>
<td>[1]</td>
</tr>
<tr>
<td>urf5</td>
<td>9</td>
<td>51380</td>
<td>3x3</td>
<td>34406</td>
<td>39309</td>
<td>12</td>
<td>[1]</td>
</tr>
<tr>
<td>QFT5</td>
<td>5</td>
<td>10</td>
<td>3x2</td>
<td>5</td>
<td>6</td>
<td>17</td>
<td>[1]</td>
</tr>
<tr>
<td>QFT6</td>
<td>6</td>
<td>15</td>
<td>2x3</td>
<td>6</td>
<td>12</td>
<td>50</td>
<td>[1]</td>
</tr>
<tr>
<td>QFT7</td>
<td>7</td>
<td>21</td>
<td>5x2</td>
<td>18</td>
<td>26</td>
<td>31</td>
<td>[1]</td>
</tr>
<tr>
<td>QFT8</td>
<td>8</td>
<td>28</td>
<td>4x2</td>
<td>18</td>
<td>33</td>
<td>45</td>
<td>[1]</td>
</tr>
<tr>
<td>QFT9</td>
<td>9</td>
<td>36</td>
<td>3x3</td>
<td>34</td>
<td>54</td>
<td>37</td>
<td>[1]</td>
</tr>
<tr>
<td>QFT10</td>
<td>10</td>
<td>45</td>
<td>5x3</td>
<td>53</td>
<td>70</td>
<td>24</td>
<td>[1]</td>
</tr>
<tr>
<td>cnt3-5</td>
<td>16</td>
<td>125</td>
<td>3x6</td>
<td>69</td>
<td>127</td>
<td>46</td>
<td>[2]</td>
</tr>
<tr>
<td>cycle10_2</td>
<td>12</td>
<td>1212</td>
<td>3x4</td>
<td>839</td>
<td>2304</td>
<td>64</td>
<td>[2]</td>
</tr>
<tr>
<td>ham15</td>
<td>15</td>
<td>458</td>
<td>5x3</td>
<td>328</td>
<td>715</td>
<td>54</td>
<td>[2]</td>
</tr>
<tr>
<td>plus127mod8192</td>
<td>13</td>
<td>65455</td>
<td>5x4</td>
<td>53598</td>
<td>151794</td>
<td>65</td>
<td>[2]</td>
</tr>
<tr>
<td>plus63mod4096</td>
<td>12</td>
<td>29019</td>
<td>5x3</td>
<td>22118</td>
<td>61556</td>
<td>64</td>
<td>[2]</td>
</tr>
<tr>
<td>plus63mod8192</td>
<td>13</td>
<td>37101</td>
<td>5x3</td>
<td>29835</td>
<td>82492</td>
<td>64</td>
<td>[2]</td>
</tr>
<tr>
<td>rd84</td>
<td>15</td>
<td>112</td>
<td>5x3</td>
<td>54</td>
<td>148</td>
<td>64</td>
<td>[2]</td>
</tr>
<tr>
<td>urf3</td>
<td>10</td>
<td>132340</td>
<td>4x3</td>
<td>94017</td>
<td>154672</td>
<td>39</td>
<td>[2]</td>
</tr>
<tr>
<td>urf6</td>
<td>15</td>
<td>53700</td>
<td>5x3</td>
<td>43909</td>
<td>88900</td>
<td>51</td>
<td>[2]</td>
</tr>
<tr>
<td>Shor3</td>
<td>10</td>
<td>2076</td>
<td>4x3</td>
<td>1710</td>
<td>1816</td>
<td>6</td>
<td>[3]</td>
</tr>
<tr>
<td>Shor4</td>
<td>12</td>
<td>5002</td>
<td>3x6</td>
<td>4264</td>
<td>4339</td>
<td>4</td>
<td>[3]</td>
</tr>
<tr>
<td>Shor5</td>
<td>14</td>
<td>10265</td>
<td>5x4</td>
<td>8456</td>
<td>10760</td>
<td>21</td>
<td>[3]</td>
</tr>
<tr>
<td>Shor6</td>
<td>16</td>
<td>18885</td>
<td>4x6</td>
<td>20386</td>
<td>20778</td>
<td>2</td>
<td>[3]</td>
</tr>
</tbody>
</table>

On average 27
Results (3)

Improvement over best 1D solution

[Bar chart showing improvement over best 1D solution for various tasks, with some tasks showing significant improvement (e.g., 27%)]
Conclusion

- Qubit placement methods for 2D quantum architectures
 - Directly applicable to Quantum Dot PMD
- 27% improvement over best 1D results

- Future work: force-directed qubit placement
 - Better results by considering both intra- and inter-set SWAP gates in the optimization problem
References

Thank you!