USCUniversity of Southern California

Qubit Placement to

Minimize Communication Overhead in 2D Quantum Architectures

Alireza Shafaei, Mehdi Saeedi, Massoud Pedram Department of Electrical Engineering

University of Southern California

Outline

- Introduction
- Quantum Computing Technologies
- Geometric Constraints
- Nearest Neighbor Architectures
- Proposed Solution
- MIP-based Qubit Placement
- Force-directed Qubit Placement
- Results
- Conclusion

Quantum Computing

- Motivation: Faster Algorithms hetp://math.nist.gov/quantum/zool
- Shor's factoring algorithm (Superpolynomial)
- Grover's search algorithm (Polynomial)
- Quantum walk on binary welded trees (Superpolynomial)
, Pell's equation (Superpolynomial)
- Formula evaluation (Polynomial)
- Representation
$\underset{\text { Algorithm }}{\text { Quantum }} \rightarrow \underset{\text { Circuit }}{\text { Quantum }} \rightarrow \underset{\substack{\text { Realization } \\(\text { PMD })}}{\text { Physical }}$

PMD: Physical Machine Description

Quantum Circuits

Qubits

- Data is carried by quantum bits or qubits
- Physical objects are ions, photons, etc.
- Quantum Gates
- Single-qubit: H (Hadamard), X (NOT)
, Two-qubit: CNOT (Controlled NOT), SWAP
$-\sqrt{-1}$
- Quantum Circuit

Quantum PMDs

- Move-based PMDs
- Explicit move instruction
- There are routing channels for qubit routing
, Examples: Ion-Trap, Photonics, Neutral Atoms
- SWAP-based PMDs
- No move instruction
- There are no routing channels
, Qubit routing via SWAP gate insertion
- Examples: Quantum Dot, Superconducting
- Focus of this presentation is on SWAP-based PMDs

Geometric Constraints

- Limited Interaction Distance
- Adjacent qubits can be involved in a two-qubit gate
- Nearest neighbor architectures
- Route distant qubits to make them adjacent - Move-based: MOVE instruction

, SWAP-based: insert SWAP gates

SWAP-based PMDs

- SWAP insertion

- Objective
- Ensure that all two-qubit gates perform local operations (on adjacent qubits)
- Side effects
- More gates, and hence more area
- Higher logic depth, and thus higher latency and higher error rate
- Minimize the number of SWAP gates by placing frequently interacting qubits as close as possible on the fabric
- This paper:MIP-based qubit placement
- Future work: Force-directed qubit placement (a more scalable solution)

MIP: Mixed Integer Programming

Example on Quantum Dot

- Simple qubit placement: place qubits considering only their immediate interactions and ignoring their future interactions

Two SWAP gates

Example on Quantum Dot (cont'd)

- Improved qubit placement: place qubits by considering their future interactions

No SWAP gate

Qubit Placement

- Assign each qubit to a location on the 2D grid such that frequently interacting qubits are placed close to one another
$x_{i w}$: assignment of q_{i} to location w
$x_{j v}$: assignment of q_{j} to location v
$m_{i j}$: number of 2-qubit gates working on q_{i} and q_{j}
dist ${ }_{w v}$: Manhattan distance between locations w and v
$c_{i w j v}=m_{i j} \times d i s t_{w v}$
$\operatorname{Min} \sum_{i=1}^{n} \sum_{w=1}^{n} \sum_{j=1}^{n} \sum_{v=1}^{n} c_{i w j v} x_{i w} x_{j v}$
subject to

$$
\begin{aligned}
& \sum_{w=1}^{n} x_{i w}=1, \quad i=1, \ldots, n, \\
& \sum_{i=1}^{n} x_{i w}=1, \quad w=1, \ldots, n, \\
& x_{i w} \in\{0,1\}, \quad i, w=1, \ldots, n .
\end{aligned}
$$

Kaufmann and Broeckx's Linearization

$$
\begin{aligned}
& \alpha_{i w}=\sum_{j=1}^{n} \sum_{v=1}^{n} c_{i w j v}, \quad i, w=1, \ldots, n \\
& z_{i w}=x_{i w} \sum_{j=1}^{n} \sum_{v=1}^{n} c_{i w j v} x_{j v}, \quad i, w=1, \ldots, n
\end{aligned}
$$

$\operatorname{Min} \sum_{i=1}^{n} \sum_{w=1}^{n} z_{i w}$
subject to

$$
\begin{gather*}
\sum_{w=1}^{n} x_{i w}=1, \quad i=1, \ldots, n \\
\sum_{i=1}^{n} x_{i w}=1, \quad w=1, \ldots, n \tag{2}\\
\alpha_{i w} x_{i w}+\sum_{j=1}^{n} \sum_{v=1}^{n} c_{i w j v} x_{j v}-z_{i w} \leq \alpha_{i w}, \quad i, w=1, \ldots, n \\
x_{i w} \in\{0,1\}, \quad i, w=1, \ldots, n \\
z_{i w} \geq 0, \quad i, w=1, \ldots, n
\end{gather*}
$$

n^{2} binary variables $\left(x_{i w}\right), n^{2}$ real variables $\left(z_{i w}\right)$, and $n^{2}+2 n$ constraints

MIP Optimization Framework

- GUROBI Optimizer 5.5 (http://www.gurobi.com)
, Commercial solver with parallel algorithms for large-scale linear, quadratic, and mixed-integer programs (free for academic use)
- Uses linear-programming relaxation techniques along with other heuristics in order to quickly solve large-scale MIP problems
- Qubit placement (the MIP formulation) does not guarantee that all two-qubit gates become localized; Instead, it ensures the placement of qubits such that the frequently interact qubits are as close as possible to one another
- SWAP insertion

SWAP Insertion

CNOT	1,	2
CNOT	5,	8
CNOT	3,	7
CNOT	2,	4
CNOT	6,	8
CNOT	1,	3
CNOT	2,	6

CNOT	1,	2
CNOT	5,	8
CNOT	3,	7
SWAP	2,	7
SWAP	2,	3
CNOT	2,	4
CNOT	6,	8
CNOT	1,	3
CNOT	2,	6

CNOT 1, 2
CNOT 5, 8
CNOT 3, 7
SWAP 2, 7
SWAP 2, 3
CNOT 2, 4
CNOT 6, 8
SWAP 1, 2

CNOT 1, 3
CNOT 2, 6

Solution Improvement (1)

- Two qubits may interact with one another at different times
- Not satisfactorily captured by a global qubit placer
- Solution: Partition the circuit into k sub-circuits $\left(S_{1}, \cdots, S_{k}\right)$

(I) The placement tool finds initial qubit placements $\left(P_{j}^{i}\right)$.
(2) A SWAP insertion block generates final qubit placements $\left(P_{j}^{f}\right)$ by inserting intra-set SWAP gates.
(3) A swapping network inserts inter-set SWAP gates to change the final placement of S_{j} to the initial placement of $S_{j_{+}}$as generated by the qubit placer

Solution Improvement (2)

- In the previous solution, P_{j}^{f} is obtained without considering P_{j+1}^{i}, for $j \geq 2$
- Large swapping networks
- Objective function of (1) only minimizes the intra-set communication distances
- Solution:Add a new term to the objective function in order to capture inter-set communication distances
$q_{i, s}$: qubit i in sub-circuit s
$x_{i w}^{S}$: assignment of $q_{i, s}$ to location w
$x_{j v}^{S}$: assignment of $q_{j, s}$ to location v
 $m_{i j}^{S}$: number of 2-qubit gates working on $q_{i, s}$ and $q_{j, s}$

Improved Qubit Placement

Intra-set communication distance

Inter-set communication distance
$\operatorname{Min} \sum_{s=1}^{k} \sum_{i=1}^{n} \sum_{w=1}^{n} \sum_{j=1}^{n} \sum_{v=1}^{n} m_{i j}^{S} d i s t_{w v} x_{i w}^{S} x_{j v}^{S}+$

$$
\sum_{s=1}^{k} \sum_{i=1}^{n} \sum_{w=1}^{n} \sum_{v=1}^{n} \operatorname{dist}_{w v} x_{i w}^{S} x_{j v}^{S+1}
$$

subject to

$$
\begin{align*}
& \sum_{w=1}^{n} x_{i w}=1, \quad i=1, \ldots, n \tag{3}\\
& \sum_{i=1}^{n} x_{i w}=1, \quad w=1, \ldots, n \\
& x_{i w} \in\{0,1\}, \quad i, w=1, \ldots, n .
\end{align*}
$$

Force-directed Qubit Placement

- Attractive forces
- A force proportional to $m_{i j}^{S}$ between $q_{i, s}$ and $q_{j, s}$.
- A (unit) force between between $q_{i, s}$ and $q_{i, s+1}$.
- Can be solved by quadratic programming

		Our Method Best 1D					
	\# of qubits	\# of gates	Grid Size	\#SWAPs	\#SWAPs	Imp. (\%)	Ref.
3_17	3	13	2×2	6	4	-50	[I]
4_49	4	30	2×2	13	12	-8	[1]
4gt10	5	36	3×2	16	20	20	[1]
4gtll	5	7	2×3	2	1	-100	[1]
4 gt 12	5	52	3×2	19	35	46	[1]
4 gt 13	5	16	3×3	2	6	67	[1]
4 gt 4	5	43	2×3	17	34	50	[1]
$4 \mathrm{gt5}$	5	22	3×3	8	12	33	[1]
$4 \bmod 5$	5	24	2×3	11	9	-22	[1]
4 mod 7	5	40	3×3	13	21	38	[1]
aj-ell	4	59	2×3	24	36	33	[1]
alu	5	31	2×3	10	18	44	[1]
decod24	4	9	2×2	3	3	0	[1]
ham7	7	87	3×3	48	68	29	[1]
hwb4	4	23	3×3	9	10	10	[1]
hwb5	5	106	3×2	45	63	29	[1]
hwb6	6	146	2×3	79	118	33	[1]
hwb7	7	2659	3×3	1688	2228	24	[1]
hwb8	8	16608	3×3	11027	14361	23	[1]
hwb9	9	20405	4×3	15022	21166	29	[1]
mod5adder	6	81	3×2	41	51	20	[1]
mod8-10	5	108	3×3	45	72	38	[1]
rd32	4	8	2×3	2	2	0	[1]
rd53	7	78	5×2	39	66	41	[1]
rd73	10	76	4×4	37	56	34	[I]

Results (2)

Our Method Best 1D

	\# of qubits	\# of gates	Grid Size	\#SWAPs	\#SWAPs	Imp. (\%)	Ref.
sym9	10	4452	4×4	2363	3415	31	[I]
sys6	10	62	4x4	31	59	47	[1]
urfl	9	57770	3×3	38555	44072	13	[I]
urf2	8	25150	2×4	16822	17670	5	[I]
urf5	9	51380	3×3	34406	39309	12	[I]
QFT5	5	10	3x2	5	6	17	[1]
QFT6	6	15	2x3	6	12	50	[I]
QFT7	7	21	5×2	18	26	31	[1]
QFT8	8	28	4x2	18	33	45	[I]
QFT9	9	36	3×3	34	54	37	[I]
QFTIO	10	45	5×3	53	70	24	[1]
cnt3-5	16	125	3×6	69	127	46	[2]
cyclel0_2	12	1212	3×4	839	2304	64	[2]
haml5	15	458	5×3	328	715	54	[2]
plus 127 mod 8192	13	65455	5×4	53598	151794	65	[2]
plus63mod4096	12	29019	5×3	22118	61556	64	[2]
plus63mod8192	13	37101	5×3	29835	82492	64	[2]
rd84	15	112	5×3	54	148	64	[2]
urf3	10	132340	4×3	94017	154672	39	[2]
urf6	15	53700	5×3	43909	88900	51	[2]
Shor3	10	2076	4×3	1710	1816	6	[3]
Shor4	12	5002	3×6	4264	4339	4	[3]
Shor5	14	10265	5×4	8456	10760	21	[3]
Shor6	16	18885	4×6	20386	20778	2	[3]
					n average	27	

Results (3)

Improvement over best ID solution

Conclusion

- Qubit placement methods for 2D quantum architectures
- Directly applicable to Quantum Dot PMD
- 27% improvement over best ID results
- Future work: force-directed qubit placement
- Better results by considering both intra- and inter-set SWAP gates in the optimization problem

References

[I] A. Shafaei, M. Saeedi, and M. Pedram, "Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures," Design Automation Conference (DAC), 2013.
[2] M. Saeedi, R.Wille, R. Drechsler, "Synthesis of quantum circuits for linear nearest neighbor architectures," Quantum Information Processing, I0(3):355377, 2011.
[3] Y. Hirata, M. Nakanishi, S. Yamashita, Y. Nakashima, "An efficient conversion of quantum circuits to a linear nearest neighbor architecture," Quantum Information \& Computation, $\mathrm{II}(\mathrm{I}-2): 0142-0166,201 \mathrm{I}$.

Thank you!

