

Qubit Placement to Minimize Communication Overhead in 2D Quantum Architectures

Alireza Shafaei, Mehdi Saeedi, **Massoud Pedram** Department of Electrical Engineering University of Southern California

Supported by the IARPA Quantum Computer Science Program

Outline

Introduction

- Quantum Computing Technologies
- Geometric Constraints
 - Nearest Neighbor Architectures

Proposed Solution

- MIP-based Qubit Placement
- Force-directed Qubit Placement

Results

Conclusion

Quantum Computing

Motivation: Faster Algorithms http://math.nist.gov/quantum/zoo/

- Shor's factoring algorithm (Superpolynomial)
- Grover's search algorithm (Polynomial)
- Quantum walk on binary welded trees (Superpolynomial)
- Pell's equation (Superpolynomial)
- Formula evaluation (Polynomial)
- Representation

PMD: Physical Machine Description

Quantum Circuits

Qubits

- Data is carried by quantum bits or qubits
- Physical objects are ions, photons, etc.

Quantum Gates

- Single-qubit: H (Hadamard), X (NOT)
- Two-qubit: CNOT (Controlled NOT), SWAP
- Quantum Circuit

Quantum PMDs

Move-based PMDs

- Explicit move instruction
 - There are routing channels for qubit routing
- Examples: Ion-Trap, Photonics, Neutral Atoms

SWAP-based PMDs

- No move instruction
 - There are no routing channels
- Qubit routing via SWAP gate insertion
- Examples: Quantum Dot, Superconducting

Focus of this presentation is on <u>SWAP-based PMDs</u>

Geometric Constraints

Limited Interaction Distance

- Adjacent qubits can be involved in a two-qubit gate
- Nearest neighbor architectures
- Route distant qubits to make them adjacent
 - Move-based: MOVE instruction

SWAP-based: insert SWAP gates

SWAP-based PMDs

SWAP insertion

- Objective
 - Ensure that all two-qubit gates perform local operations (on adjacent qubits)
- Side effects
 - More gates, and hence more area
 - Higher logic depth, and thus higher latency and higher error rate
- Minimize the number of SWAP gates by placing frequently interacting qubits as close as possible on the fabric
 - This paper: MIP-based qubit placement
 - Future work: Force-directed qubit placement (a more scalable solution)

MIP: Mixed Integer Programming

Example on Quantum Dot

 Simple qubit placement: place qubits considering only their immediate interactions and ignoring their future interactions

Two SWAP gates

Example on Quantum Dot (cont'd)

Improved qubit placement: place qubits by considering their future interactions

No SWAP gate

Qubit Placement

su

Assign each qubit to a location on the 2D grid such that frequently interacting qubits are placed close to one another

 x_{iw} : assignment of q_i to location w x_{jv} : assignment of q_j to location v m_{ij} : number of 2-qubit gates working on q_i and q_j $dist_{wv}$: Manhattan distance between locations w and v $c_{iwjv} = m_{ij} \times dist_{wv}$

$$\begin{aligned} &\text{fin } \sum_{i=1}^{n} \sum_{w=1}^{n} \sum_{j=1}^{n} \sum_{v=1}^{n} c_{iwjv} x_{iw} x_{jv} \\ &\text{oject to} \\ & \sum_{w=1}^{n} x_{iw} = 1, \quad i = 1, \dots, n, \\ & \sum_{i=1}^{n} x_{iw} = 1, \quad w = 1, \dots, n, \\ & x_{iw} \in \{0, 1\}, \quad i, w = 1, \dots, n, \end{aligned}$$

Kaufmann and Broeckx's Linearization

$$\alpha_{iw} = \sum_{j=1}^{n} \sum_{\nu=1}^{n} c_{iwj\nu}, \quad i, w = 1, ..., n$$

$$z_{iw} = x_{iw} \sum_{j=1}^{n} \sum_{\nu=1}^{n} c_{iwj\nu} x_{j\nu}, \quad i, w = 1, ..., n$$

Min
$$\sum_{i=1}^{n} \sum_{w=1}^{n} z_{iw}$$

subject to

$$\sum_{w=1}^{n} x_{iw} = 1, \quad i = 1, ..., n,$$

$$\sum_{i=1}^{n} x_{iw} = 1, \quad w = 1, ..., n,$$

$$\alpha_{iw} x_{iw} + \sum_{j=1}^{n} \sum_{v=1}^{n} c_{iwjv} x_{jv} - z_{iw} \le \alpha_{iw}, \quad i, w = 1, ..., n,$$

$$x_{iw} \in \{0, 1\}, \quad i, w = 1, ..., n,$$

$$z_{iw} \ge 0, \quad i, w = 1, ..., n.$$
(2)

 n^2 binary variables (x_{iw}) , n^2 real variables (z_{iw}) , and $n^2 + 2n$ constraints

R. E. Burkard, E. ela, P. M. Pardalos, and L. S. Pitsoulis. The Quadratic Assignment Problem. Handbook of Combinatorial Optimization, Kluwer Academic Publishers, pp. 241-338, 1998.

MIP Optimization Framework

• GUROBI Optimizer 5.5 (<u>http://www.gurobi.com</u>)

- Commercial solver with parallel algorithms for large-scale linear, quadratic, and mixed-integer programs (free for academic use)
- Uses linear-programming relaxation techniques along with other heuristics in order to quickly solve large-scale MIP problems
- Qubit placement (the MIP formulation) does not guarantee that all two-qubit gates become localized; Instead, it ensures the placement of qubits such that the frequently interact qubits are as close as possible to one another
 - SWAP insertion

SWAP Insertion

7-2-9	3-7-9	3-7-9
3-1-6	2 1 6	0-2-6
4-5-8	4-5-8	4-5-8
CNOT 1, 2	CNOT 1, 2	CNOT 1, 2
CNOT 5, 8	CNOT 5, 8	CNOT 5, 8
CNOT 3, 7	CNOT 3, 7	CNOT 3, 7
CNOT 2, 4	SWAP 2, 7	SWAP 2, 7
CNOT 6, 8	SWAP 2, 3	SWAP 2, 3
CNOT 1, 3	CNOT 2, 4	CNOT 2, 4
CNOT 2, 6	CNOT 6, 8	CNOT 6, 8
	CNOT 1, 3	SWAP 1, 2
	CNOT 2, 6	CNOT 1, 3
		CNOT 2, 6

Solution Improvement (1)

- Two qubits may interact with one another at different times
 - Not satisfactorily captured by a global qubit placer
 - Solution: Partition the circuit into k sub-circuits (S_1, \dots, S_k)

- (2) A SWAP insertion block generates final qubit placements (P_j^f) by inserting <u>intra-set SWAP</u> gates.
- (3) A swapping network inserts <u>inter-set SWAP</u> gates to change the final placement of S_j to the initial placement of S_{j+1} as generated by the qubit

14 placer

Solution Improvement (2)

- ▶ In the previous solution, P_j^f is obtained without considering P_{j+1}^i , for $j \ge 2$
 - Large swapping networks
 - Objective function of (1) only minimizes the intra-set communication distances
 - Solution: Add a new term to the objective function in order to capture inter-set communication distances

Improved Qubit Placement

Force-directed Qubit Placement

Attractive forces

- A force proportional to m_{ij}^s between $q_{i,s}$ and $q_{j,s}$.
- A (unit) force between between $q_{i,s}$ and $q_{i,s+1}$.
- Can be solved by quadratic programming

Result	ts (1)		Our M	1ethod	Best 1D		
	# of qubits	# of gates	Grid Size	#SWAPs	#SWAPs	Imp. (%)	Ref.
3 17	3	13	2x2	6	4	-50	[1]
4 49	4	30	2x2	13	12	-8	[1]
- 4gt10	5	36	3x2	16	20	20	[1]
4gtll	5	7	2x3	2	I	-100	[1]
4gt12	5	52	3×2	19	35	46	[1]
4gtl3	5	16	3×3	2	6	67	[1]
4gt4	5	43	2x3	17	34	50	[1]
4gt5	5	22	3×3	8	12	33	[1]
4mod5	5	24	2x3	11	9	-22	[1]
4mod7	5	40	3x3	13	21	38	[1]
aj-el l	4	59	2x3	24	36	33	[1]
alu	5	31	2x3	10	18	44	[1]
decod24	4	9	2x2	3	3	0	[1]
ham7	7	87	3x3	48	68	29	[1]
hwb4	4	23	3x3	9	10	10	[1]
hwb5	5	106	3x2	45	63	29	[1]
hwb6	6	146	2x3	79	118	33	[1]
hwb7	7	2659	3x3	1688	2228	24	[1]
hwb8	8	16608	3×3	11027	14361	23	[1]
hwb9	9	20405	4x3	15022	21166	29	[1]
mod5adder	6	81	3x2	41	51	20	[1]
mod8-10	5	108	3×3	45	72	38	[1]
rd32	4	8	2x3	2	2	0	[1]
rd53	7	78	5x2	39	66	41	[1]
rd73	10	76	4x4	37	56	34	[1]

Results (2)			Our Method		Best 1D		
	# of qubits	# of gates	Grid Size	#SWAPs	#SWAPs	Imp. (%)	Ref.
sym9	10	4452	4x4	2363	3415	31	ניז
sys6	10	62	4x4	31	59	47	i i
urfl	9	57770	3×3	38555	44072	13	[1]
urf2	8	25150	2x4	16822	17670	5	[1]
urf5	9	51380	3x3	34406	39309	12	[I]
QFT5	5	10	3×2	5	6	17	[1]
QFT6	6	15	2x3	6	12	50	[1]
QFT7	7	21	5x2	18	26	31	[1]
QFT8	8	28	4x2	18	33	45	[1]
QFT9	9	36	3x3	34	54	37	[1]
QFT10	10	45	5x3	53	70	24	[1]
cnt3-5	16	125	3×6	69	127	46	[2]
cycle10_2	12	1212	3x4	839	2304	64	[2]
ham I 5	15	458	5x3	328	715	54	[2]
plus I 27 mod 8 I 92	13	65455	5x4	53598	151794	65	[2]
plus63mod4096	12	29019	5x3	22118	61556	64	[2]
plus63mod8192	13	37101	5×3	29835	82492	64	[2]
rd84	15	112	5×3	54	148	64	[2]
urf3	10	132340	4x3	94017	154672	39	[2]
urf6	15	53700	5×3	43909	88900	51	[2]
Shor3	10	2076	4x3	1710	1816	6	[3]
Shor4	12	5002	3×6	4264	4339	4	[3]
Shor5	14	10265	5x4	8456	10760	21	[3]
Shor6	16	18885	4x6	20386	20778	2	[3]
					On average	27	

Results (3)

Improvement over best ID solution

Conclusion

- Qubit placement methods for 2D quantum architectures
 - Directly applicable to Quantum Dot PMD
- 27% improvement over best ID results
- Future work: force-directed qubit placement
 - Better results by considering both intra- and inter-set SWAP gates in the optimization problem

References

[1] A. Shafaei, M. Saeedi, and M. Pedram, "Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures," *Design Automation Conference (DAC)*, 2013.

[2] M. Saeedi, R. Wille, R. Drechsler, "Synthesis of quantum circuits for linear nearest neighbor architectures," *Quantum Information Processing*, 10(3):355–377, 2011.

[3] Y. Hirata, M. Nakanishi, S. Yamashita, Y. Nakashima, "An efficient conversion of quantum circuits to a linear nearest neighbor architecture," *Quantum Information & Computation*, 11(1–2):0142–0166, 2011.

Thank you!