
A Novel Wirelength-Driven
Packing Algorithm for FPGAs
with Adaptive Logic Modules

Speaker: Po-Yi Hsu

Sheng-Kai Wu, Po-Yi Hsu, Wai-Kei Mak

Dept. of CS, National Tsing Hua University

Outline

• Introduction

• Preliminaries

• Algorithm

• Experimental results

• Conclusion

Fracturability of ALM

• ALM can serve as a 6-input LUT or two smaller LUTs
if the total distinct inputs is less or equal to 8 under
certain constraints.

(From http://www.altera.com)

http://www.altera.com/
http://www.altera.com/

Recent Research of ALM

• [Hutton FPL04] reported that the ALM architecture
led to a 15% timing improvement and 12% area
reduction on average versus a standard BLE4
architecture.

• How to merge two LUTs into one ALM so that it will
not adversely affect the quality for later placement
and routing is an important issue.

• In this work, we propose a novel packing algorithm
for ALM-based FPGA targeting directly at
wirelength minimization.

Outline

• Introduction

• Preliminaries
• The idea of safe clustering

• Problem formulation

• Algorithm

• Experimental results

• Conclusion

The idea of safe clustering

• The concept of safe clustering for effectively
reducing the problem size in ASIC placement was
introduced in [Yan TCAD12].

• Safe clustering guarantees that the clustering will
not adversely affect the final total wirelength.

Gradient functions

• Given a hypergraph 𝐺(𝑉, 𝐸), where 𝑉 is the set of
nodes and 𝐸 is the set of hyperedges
corresponding to the nets.

• 𝑃: the set of all possible valid placements

• 𝐸𝑣: the set of hyperedges incident to 𝑣

if 𝑎 is the rightmost vertex of 𝑒

if 𝑎 is the only leftmost vertex of 𝑒

otherwise

Total wirelength gradient function

• From the above gradient function, the total wirelength
gradient function is defined as follows:

• If all possible placements Fab is not greater than zero. It
is safe to cluster 𝑎 and 𝑏.

• However, it is not practical to generate all possible
placements when considering clustering 𝑎 and 𝑏.

Selective enumeration

• A selective placement enumeration approach is
proposed in [Yan TCAD12].

• It only enumerates the placements that might
generate worse wirelength if we merge 𝑎 and 𝑏.

|𝑃| = ∞

3|𝑉𝑎𝑏|

2|𝑉𝑎𝑏|

2|𝑉𝑎𝑏|−𝛼

Only consider 𝑉𝑎𝑏 nodes connected
with at least one of a or b

All placement

For each node 𝑣 ∈ 𝑉𝑎𝑏
(1) 𝑣 is on the left of 𝑎
(2) 𝑣 is between 𝑎 and 𝑏
(3) 𝑣 is on the right of 𝑏

[Yan TCAD12] has proven that case(2) will
never be worse than case(1) or case(3).

[Yan TCAD12] identified a subset of nodes
in Vab for which it is unnecessary to
consider both possible positions for them.

Only two possible locations for 𝑣

Final placements that need
to be enumerated to check
the safeness

Problem formulation

• Given:
• A mapped netlist of 6-input LUTs

• Objective:
• Merge the LUTs into ALMs under the ALM architecture

constraint and cluster ALMs into CLBs so as to optimize
the expected wirelength after place and route.

Outline

• Introduction

• Preliminaries

• Algorithm
-Merge LUTs into ALMs
-CLB clustering

• Experimental results

• Conclusion

Overall flow

 Gate-Level
Netlist

Technology mapping

LUT Netlist

VPR: Placement & Route

CLB Netlist

Pack ALMs into CLBs

Merge LUTs into ALMs

ALMPack

Merge LUTs into ALMs

• We model the wirelength-driven ALM formation
problem as a minimum weighted maximum
matching problem.

• We construct a weighted undirected graph where
each node corresponding to a LUT, and there is an
edge between two nodes if and only if the
corresponding LUTs can be merged into an ALM.

Merge LUTs into ALMs flow

LUT netlist

Identify LUT pairs which
can be merged into an ALM

ALM netlist

Compute edge weight of
each LUT pairs

call minimum weighted
maximum matching solver

 Edge weight

• We define the edge weight between two nodes 𝑎
and 𝑏 as follows:

Pack ALMs into CLBs
ALM netlist

Identify ALM pairs which
can be merged into a CLB

Compute edge weight of
each ALM pairs

call minimum weighted
maximum matching solver

Choose one ALM
put into a new CLB

CLB netlist

Compute edge weight of
other unpacking ALM

Pack feasible ALM with
smallest edge weight

𝑁 = 2𝑘 𝑁 ≠ 2𝑘

𝑘 𝑙𝑜𝑜𝑝𝑠

𝑒𝑥𝑖𝑠𝑡𝑠 𝑢𝑛𝑝𝑎𝑐𝑘𝑖𝑛𝑔
𝐴𝐿𝑀

𝐶𝐿𝐵 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑢𝑙𝑙

Outline

• Introduction

• Preliminaries

• Algorithm

• Experimental results
• ALM-based FPGA (compare to AAPack)

• Traditional BLE4 FPGA (compare to T-VPack)

• Conclusion

Environment Setup

• We implemented our packing algorithm, ALMPack,
using C++ on an Ubuntu workstation with 8 GB
memory and 2.13 GHz CPU.

• 20 largest MCNC benchmarks for the experiments.

ALM-based FPGA

Bench. # LUTs
CLBs min. channel width wirelength delay(10-8 sec)

AAPack ALMPack track ALMPack AAPack ALMpack AAPack ALMPack

ex5p 745 54 57 58 48 5372 4503 0.824 0.698

spla 2072 166 187 106 86 27651 24123 1.4491 1.172

alu4 803 65 70 62 58 7395 6956 0.9479 0.795

apex2 1058 88 85 74 72 11538 10554 1.073 1.002

apex4 787 65 63 72 72 8904 7198 1.1377 0.851

des 555 46 46 40 38 4999 4063 0.4674 0.461

ex1010 2703 224 221 114 94 35318 32048 1.1002 1.235

misex3 818 65 66 62 60 7349 7170 0.8506 0.905

pdc 2417 195 206 116 96 33328 31907 1.1725 1.341

seq 960 77 76 74 74 9011 8804 0.6801 0.788

bigkey 579 50 50 44 40 4560 2796 0.4346 0.293

clma 3911 330 328 88 74 41977 31467 1.399 1.247

dsip 689 43 43 38 34 3791 3055 0.3653 0.356

diffeq 660 55 54 44 30 4251 2628 0.5957 0.695

elliptic 1795 140 138 74 50 14711 9946 0.8975 0.969

frisc 1797 133 132 88 74 18962 14221 1.11 1.175

s298 780 62 62 60 58 6314 5859 1.158 1.075

s38417 2781 217 215 54 42 17742 15217 1.308 1.335

s38584 2504 195 185 64 44 18278 14812 0.8522 0.824

tseng 660 51 49 40 28 3740 2217 0.5054 0.586

Avg. Impv. -0.47% 14.54% 17.97% 2.14%

ALM-based FPGA

• It shows that the final wirelength is improved in all
cases and is 17.97% shorter on average using ALMpack.

• Reduced the minimum channel width in 18 of the 20
benchmarks and never increased the minimum channel
width.

• We ran AAPack in default mode which optimizes both
area and timing, but we still obtained 2.14%
improvement for delay on average with comparable
area.

• Our delay improvement will be more significant if we
route the designs under the same channel widths as
AAPack.

Traditional BLE4 FPGA

Bench. # LUTs
CLBs min. channel width wirelength delay(10-8 sec)

T-VPack ALMPack T-VPack ALMPack T-Vpack ALMpack T-Vpack ALMPack

ex5p 892 116 112 46 42 8214 7355 1.60548 1.22603

spla 3016 386 377 54 52 30214 28341 1.89437 1.9539

alu4 1205 155 151 42 38 9842 9111 1.25202 1.4911

apex2 1441 187 181 46 42 13004 11145 1.44227 1.1804

apex4 1061 138 135 50 44 9825 9006 1.43892 1.2831

des 1238 156 155 28 28 17292 16311 1.1487 1.722

ex1010 3854 513 496 72 58 47525 37386 2.75033 1.7329

misex3 1173 151 150 42 36 9401 8780 1.4199 1.235

pdc 3435 442 430 62 58 38730 36819 2.34965 2.6949

seq 1361 177 172 46 42 12430 11701 1.205 1.1713

bigkey 1146 144 144 18 12 14177 11482 0.5724 0.519

clma 5621 706 703 60 50 55226 40757 1.8288 1.796

dsip 1368 171 171 18 12.00 14155 9780.00 0.6116 0.61

diffeq 981 123 123 22 18.00 4671 3289.00 0.7795 0.871

elliptic 2050 261 257 34 28 17088 11946 1.2081 1.255

frisc 2282 288 286 50 40.00 19404 16656.00 1.3278 1.443

s298 1053 134 133 38 36.00 8746 8347.00 1.5905 1.431

s38417 4978 623 623 32 20.00 23754 15717.00 0.9948 1.031

s38584 4497 563 559 30 20.00 24731 13934.00 1.6917 0.815

tseng 779 98 98 16 12.00 4208 3017.00 0.7555 0.691

Avg. Impv. 1.4 16.59 17.57 3.62

Traditional BLE4 FPGA

• Use WireMap implemented in ABC [10] to generate the
netlists of 4-LUTs and compare our algorithm with T-
VPack [9].

• We reduced the wirelength for all 20 benchmarks with
17.57% improvement on average.

• We achieved better minimum channel width in 18 of
the 20 benchmarks with 16.59% improvement on
average.

• Although ALMpack does not directly target to minimize
delay, it still obtained 3.71% delay improvement on
average compared to the timing-driven packing
algorithm, T-VPack, while reducing the channel width
by 16.59%.

Outline

• Introduction

• Preliminaries

• Algorithm

• Experimental results

• Conclusion

Conclusion

• We proposed a novel wirelength-driven algorithm
to merge the LUTs and pack the ALMs to ensure
that it will not adversely affect the final wirelength.

• The experimental results show that our packing
algorithm consistently outperforms AAPack for
ALM-based FPGA and T-VPack for traditional FPGA
by a large margin.

Thank you for listening.

