



## BOB-Router: A New Buffering-Aware Global Router with Overthe-Block Routing Resources Optimization

Yilin Zhang<sup>1</sup>, Salim Chowdhury<sup>2</sup> and David Z. Pan<sup>1</sup>

1 ECE, Univ. of Texas At Austin

2 Oracle, Austin

## Outline

#### Background, Motivation and Difficulties

#### BOB-Router

- Formulation
- > Four steps
- Experimental Results
- Conclusion

## **Blooming Research on Routing**

- Two SRC and IEEE-CEDA sponsored ISPD Global Routing Contests (ISPD 07 and 08)
- Exciting results with traditional objectives such as wirelength, via count and routability are reported by well-known routers and their extensions, such as NTUgr, GRIP, FGR, MaizeRouter, Archer, NCTU-GR, FastRoute, BoxRouter and NTHU-Route

## **More Practical Objectives**

- Most published modern routers aim at the same Objectives
  - Minimizing wirelength (WL) and via count in addition to alleviating congestion
- Pre-placed IP blocks or macros introduce serious signal integrity issues (slew violation) for routing over the blocks
- Routing over the IP blocks not allow periodic placement of repeaters (outside the IP blocks) to alleviate the slew violations.

## **Why They Are Not Practical Enough**

- How to deal with pre-placed IP blocks and macros?
  - Buffer-unaware routing will result in long net over the block
    - » Unable to buffer adequately
    - » Large slew and bad timing



- Totally avoid over-the-block routing
   » Losing routing resources over-the-block
  - » More congestion outside



[Li+,ICCAD08]

## **Need Better Routing/Buffering**

- Use over-the-block routing resources properly
- Our definition of **Properly**:
  - No slew violation for any over-the-block net
    - » Help signal integrity and timing
  - Use as much over-the-block routing resources as possible
  - Minimize total (both over-the-block and outside)
     WL+via cost

#### **Slew Model Used**

 For any inside tree (tree inside the block), the worst slew part would occur at escaping points (on the edges of IP blocks)

- > If slew on EPs are good, then no problem everywhere
- Use PERI model for slew calculation
  - The error of PERI is within 1% [Kashyap+,ISPD03]

$$S(v_j) = \sqrt{S(v_i)^2 + S_{step}(v_i, v_j)^2}$$
(1)

Use Bakoglu's metric for step slew calculation [Bakoglu,90]

$$S_{step}(v_i, v_j) = \alpha * Elmore(v_i, v_j), \alpha = ln9$$
(2)

## Outline

#### Background, Motivation and Difficulties

#### BOB-Router

- Formulation
- > Four steps
- Experimental Results
- Conclusion

### **New Problem Formulation**

- New objectives:
  - > Reducing total overflow (TOF)
  - > Minimizing total WL+via cost in additional
  - Over-the-block trees have to satisfy the slew constraints which ensure that every topology has feasible buffering solutions

#### We Use 3D Routing Model

#### 3D Grid Graph

#### 2D Global Routing Bins



#### **BOB-Router Overall Approach**



## **Main Steps within Each Block**

- Step 1: Build initial legal inside tree for each net in block b
- Step 2: Calculate the prices for each edge in block b
- Step 3: Using 3-level progressive method to select topologies to reroute
- Step 4: Reroute selected topologies to generate new topologies

## **Step1: Initial Legal Inside Trees**

#### First Use BOB-RSMT [Zhang<sup>+</sup>,ICCAD12] to legalize slew for each inside tree



Use over-the-IP-block routing resources

Use over-the-IP-block routing resources with slew and buffering consideration

## **Step1: Initial Legal Inside Trees**



We have topology-pool for each inside tree

- Initially the topology-pool only has one topology
- We use the formulation to calculate prices for each edge (also is the sensitivity of edge-capacitance)

ILP Problem formulation [Wu+,2009 DAC]

$$\begin{aligned} \min \sum_{i=1}^{n} \sum_{t \in \zeta_{i}} X_{it} W_{it} + M \sum_{i=1}^{n} S_{i} \\ \text{s.t. } \forall i, S_{i} + \sum_{t \in \zeta_{i}} X_{it} = 1 \\ \sum_{i=1}^{n} \sum_{t \in \zeta_{i}} X_{ite} &\leq C_{e} \quad \forall e \prec b \\ X_{it} \in \{0, 1\} \quad \forall i \in \{1, 2, \dots, n\} \quad \forall t \in \zeta_{i} \\ S_{i} \in \{0, 1\} \quad \forall i \in \{1, 2, \dots, n\} \end{aligned}$$

Relax ILP to LP (Dual-LP will provide price for each edge)

$$\begin{aligned} \min \sum_{i=1}^{n} \sum_{t \in \zeta_{i}} X_{it} W_{it} + M \sum_{i=1}^{n} S_{i} \\ \text{s.t. } \forall i, S_{i} + \sum_{t \in \zeta_{i}} X_{it} = 1 \\ \sum_{i=1}^{n} \sum_{t \in \zeta_{i}} X_{ite} &\leq C_{e} \quad \forall e \prec b \\ X_{it} &\geq 0 \quad \forall i \in \{1, 2, \dots, n\} \quad \forall t \in \zeta_{i} \\ S_{i} &\geq 0 \quad \forall i \in \{1, 2, \dots, n\} \end{aligned}$$

#### Derive dual problem

- >  $\lambda_i$  and  $\rho_e$  are Lagrange Multipliers
- > Lagrangian function:

$$\begin{split} \Lambda(X,\lambda,\rho) &= \sum_{i=1}^n \sum_{t \in \zeta_i} X_{it} W_{it} + M \sum_{i=1}^n S_i + \sum_{i=1}^n \lambda_i (S_i + \sum_{t \in \zeta_i} X_{it} - 1) + \sum_{e \prec b} \rho_e (\sum_{i=1}^n \sum_{t \in \zeta_i} X_{ite} - C_e) \\ \rho_e &\geq 0 \end{split}$$

> Dual-problem  

$$g(\lambda, \rho) = \inf_{X,S} \Lambda(X, \lambda, \rho) = \sum_{i=1}^{n} \lambda_i (-1) + \sum_{e \prec b} \rho_e (-C_e)$$

$$\rho_e \ge 0$$

$$\forall t, W_{it} + \lambda_i + \sum_{e \prec t} \rho_e \ge 0$$

$$\forall i, M + \lambda_i \ge 0$$

 Solve dual problem will provide pe which is the price of edge e (also is the sensitivity on edgecapacitance)

$$\begin{aligned} \max \sum_{i=1}^{n} (-\lambda_i) + \sum_{e \prec b} (-\rho_e) c_e \\ \text{s.t. } \lambda_i + \sum_{e \prec t} \rho_e + W_{it} >= 0 \\ \lambda_i >= -M \qquad \forall i \in \{1, 2, \dots, n\} \\ \rho_e >= 0 \qquad \forall e \prec b \end{aligned}$$



#### **Step3: Select Topologies to Re-route**

- Dynamic 3-level progressive topology-selecting strategy
- Once current level stops optimization, march to the next level
  - > First, un-routable (in LP) inside trees  $(S_i > 0)$
  - > Then, inside trees with real overflow
    - » Solve an ILP to choose topology for each inside tree, then see which inside trees contain real overflow
  - > Last, inside trees with high price edge

## **Step3: Select Re-route Topologies**

- First, un-routable (in LP) inside trees ( $S_i > 0$ )
- Then, inside trees with real overflow
  - > Solve ILP to find out inside tree with real overflow
- Last, inside trees with high price edge



#### **Optimization Process**



### **Step 4: RC-constrained A\* search**

#### For any selected topology t

- > Find and sort all positive-price branches
- > For the first branch w(U, V) on t, remove w
- For each point p in t\w, find RC<sub>p</sub> and C<sub>p</sub> which are maximum allowed RC and C at p
- A\* search, with pruning by RC<sup>max</sup> and C<sup>max</sup>, to reconnect branch w

$$RC^{max} = \max\{RC_p, p \in \{t \setminus w\}\}$$
$$C^{max} = \max\{C_p, p \in \{t \setminus w\}\}$$

- > The connected point p will check RC<sub>p</sub> and C<sub>p</sub>
- This guarantee new topology satisfy slew

## Outline

#### Background, Motivation and Difficulties

#### BOB-Router

- Formulation
- > Four steps
- Experimental Results
- Conclusion

## **Results Of Slew Distribution**



## **Results Of TOF, Wirelength, Vias**

Compare results in terms of TOF, cost (WL+via)

- > Benchmarks adaptec1~5, bigblue1~4
- > In inside part, 6 of 8 benchmarks have 0 TOF



TOF

WL+VIAs

#### **Result of Bob-Router**

#### **SLEW DISTRIBUTION OF INSIDE TREES**

| Benchmarks | # nets  | # inside trees | max slew | average slew |
|------------|---------|----------------|----------|--------------|
| adaptec1   | 219794  | 57852          | 1713.8   | 36.9         |
| adaptec2   | 260159  | 34769          | 494.4    | 28.5         |
| adaptec3   | 466295  | 105137         | 23785.5  | 141.6        |
| adaptec4   | 515304  | 86199          | 3986.7   | 65.8         |
| bigblue1   | 282974  | 18763          | 380.1    | 22.1         |
| bigblue2   | 576816  | 117259         | 69.9     | 4.0          |
| bigblue3   | 1122340 | 79659          | 2025.1   | 22.1         |
| bigblue4   | 2228930 | 234692         | 631.1    | 5.0          |

#### COMPARISONS BETWEEN OUR PROPOSED BOB-ROUTER AND OA-ROUTER

| Bench    | over-the-block |        |      | outside-the-block |         |         | overall |        |         | OA-Router |        |        |          |          |         |        |
|----------|----------------|--------|------|-------------------|---------|---------|---------|--------|---------|-----------|--------|--------|----------|----------|---------|--------|
| -marks   | WL             | Vias   | TOF  | cpu(s)            | WL      | Vias    | TOF     | cpu(s) | WL      | Vias      | TOF    | cpu(s) | WL       | Vias     | TOF     | cpu(s) |
| adaptec1 | 431886         | 138207 | 0    | 5690              | 2733837 | 1344218 | 199565  | 1421   | 3165723 | 1482425   | 199565 | 7111   | 3317320  | 1724765  | 450300  | 3463   |
| adaptec2 | 261957         | 57838  | 265  | 4523              | 2615068 | 1258131 | 28847   | 1038   | 2877025 | 1315969   | 29112  | 5561   | 3371453  | 1836853  | 107498  | 4577   |
| adaptec3 | 1235721        | 154123 | 1333 | 100210            | 8355049 | 2849048 | 639049  | 16527  | 9590770 | 3003171   | 640382 | 116737 | 10100613 | 3740726  | 1276779 | 18845  |
| adaptec4 | 836840         | 105953 | 0    | 32718             | 8831370 | 2580484 | 329221  | 13202  | 9668210 | 2686437   | 329221 | 45920  | 11326871 | 3498262  | 438954  | 13455  |
| bigblue1 | 98044          | 42090  | 0    | 55                | 3248498 | 1367350 | 22612   | 1637   | 3346542 | 1409440   | 22612  | 1692   | 3637249  | 1967568  | 70853   | 2232   |
| bigblue2 | 258699         | 350385 | 0    | 520               | 3730497 | 2985365 | 3795    | 1131   | 3989196 | 3335750   | 3795   | 1651   | 4799773  | 3800398  | 5145    | 1346   |
| bigblue3 | 522841         | 141885 | 0    | 2119              | 7800699 | 3847139 | 15148   | 2621   | 8323540 | 3989024   | 15148  | 4740   | 8961863  | 5267470  | 83416   | 8603   |
| bigblue4 | 575639         | 731836 | 0    | 303               | 9358521 | 7489968 | 5266    | 2266   | 9934160 | 8221804   | 5266   | 2569   | 12363167 | 10444398 | 27939   | 5784   |
| average  | 0.08           | 0.06   | 0.00 | 0.51              | 0.92    | 0.94    | 1.00    | 0.49   | 1.00    | 1.00      | 1.00   | 1.00   | 1.13     | 1.28     | 3.07    | 1.00   |

## Outline

#### Background, Motivation and Difficulties

#### BOB-Router

- Formulation
- > Four steps
- Experimental Results
- Conclusion

#### Conclusion

- We study an important new class of Global Routing problem
- We propose an effective and efficient algorithm which can properly use over-the-IP-block routing resources satisfying slew constraints
  - > Make use of over-the-IP-block routing resources
  - > Satisfy slew constraints
  - > Provide less TOF and WL+VIAs

# Thank you!