

Walking Pads: Fast Power-Supply Pad-Placement Optimization

K. Wang*, B.H. Meyer[†], R. Zhang*, K. Skadron*, M. Stan**University of Virginia, [†]McGill University

Research made possible with the support of the NSF, SRC, MARCO, and DARPA

Background: Power Delivery

- *Objective*: provide a spatially uniform and temporally stable voltage supply
- *Challenge*: non-uniform current demand
- On-chip power delivery interface: *controlled collapse chip connection* (C4) pads
 - Shared by power and I/O subsystems

Motivation

- Process scaling complicates power delivery
 - Imperfect supply voltage scaling ⇒
 Increasing current density
 - 2. C4 pads are a scarce resource
 - C4 density has not scaled
 - Increasing I/O demands
- Power pads must be placed close to current sources
- ⇒ Pad allocation must be optimized!

 Power Supply C4 Pads

C4 Pad Allocation Matters

© 2014 Brett H. Meyer

Walking Pads

- Challenges
 - *Massive* design space ($10^{200} 10^{1400}$)
 - Computationally *expensive* design evaluation
- Recent approaches
 - Placement for pad rings [Sato ASPDAC'05]
 - Analytical models [Rius TVLSI 21(3)]
 - Simulated annealing (SA) [Zhong ASPDAC'07]
- *Idea*: Allow all pads to simultaneously *walk* toward current demands in the system
 - Reduces the number of designs to evaluate
 - Results in *substantial* speedup over SA, up to 634X!

Overview

- Modeling and Optimization Framework
- Experimental Setup and Results
- Analytical Model for Fast Pad Count Optimization
- Conclusions and Future Work

Power Delivery Network Model

- Architectural blocks as ideal current sources
- C4 pads on a coarse grid
- Fine-grained PDN grid modeling
- Given a configuration, solve for V(x, y)

Walking Pads Framework

• PDN voltage field obeys Poisson's equation

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = I_{xy}R$$

• Key observation: electrostatic field looks similar

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = \frac{\rho_{xy}}{\varepsilon_{xy}}$$

- Treat pad allocation as a force balance problem
 - Allow virtual electrostatic forces on pads to push and pull them into place

Virtual Forces

- Pads: mobile positive charges
- Current sources: *negative surface charges*
- Virtual forces move pads
 - Sources pull pads to optimal locations
 - Other pads push each them away
- Virtual forces calculated using Gauss's Law
 - Direct superposition is too expensive (100s of pads!)
 - Instead, use voltage gradient in N, S, E, and W to determine total virtual force

Walking Pads Algorithms

- Basic structure:
 - 1. Calculate steady-state equations
 - 2. Determine direction and displacement of movement for each pad using *virtual forces*
 - 3. Move pads
- WP-N: move all pads in one step, constant displacement, one step in the grid
- WP-F: move all pads in one step, initially large displacement that decreases gradually until frozen
- WP-R: greedily move one pad at a time (pads sorted by distance to max IR drop location)

WP Ex: WP-F Optimization

WP Ex: WP-R Optimization

© 2014 Brett H. Meyer

Experimental Setup

- Architectures
 - 16 to 48-core multicore systems
 - Synthetic benchmarks
- Comparison with Zhong and Wong (ASP-DAC'07)
 - Simulated annealing technique
 - Cooling rates of 0.999 (SA-S– ground truth) and 0.98 (SA-P– practical optimization)

Results: Pad Placement Quality

- 24 cores, 180 pads
- McPAT for power (85% of peak)
- Uni: 12.5% IR
- SA-P: 6.9% IR
- WP-N: 10.2%
- WP-F: 7.5%
 - 157X faster
 - 0.6% higher

Results: WP-F and WP-R, 24 Cores

15

Synthetic Benchmarks

- All 20x20 mm², 150 W total
- Uniform (Uni)
- Half-half (HH, 4:1, black:white)
- Checkerboard (CB, 4:1, black:white)

- Three-level variations (TLx)
- 3:2:1, black:gray:white

Results: Scaled and Synthetic Systems

Bench.	# pads	# loc	Spee	Speedup		% Gap	
			F	R – T 1	F	R – T 1	R
S-Uni	512	4900	498	206	0.18	-0.03	-0.11
S-H H	512	4900	498	206	0.23	-0.03	-0.11
S-СВ	512	4900	498	206	0.20	-0.06	-0.12
S-TL1	512	4900	498	206	0.15	-0.03	-0.10
S-TL2	512	4900	498	206	0.24	0.01	-0.12
S-TL3	512	4900	498	206	0.19	-0.03	-0.11
16-Core	512	1914	375	155	0.42	0.16	-0.07
24-Core	768	2880	670	277	0.33	0.071	-0.04
32-Core	1024	3844	961	397	0.41	0.070	-0.07
48-Core	1536	5776	1536	634	0.39	0.055	-0.09

How Many Pads?

- WP: Given *n* pads, determines placement
- How do we determine *n*? An analytical model.
- Simplifying assumptions:
 - 1. On-chip current density is uniform
 - 2. All pad currents are equal (I_0)
 - 3. Each pad serves a circular area with radius r_0

•
$$V_{drop} = a \frac{1}{N_p} \log \frac{\partial}{\partial} \frac{1}{N_p} \frac{\ddot{0}}{\dot{b}} + b \frac{1}{N_p} + c$$

where a, b and c are constant functions of I_0 , r_0 , r_{ε} , ρ , I, or the voltage drop across the package

PDN Design Space

Fast Pad Count Optimization

- 1. Choose three pad counts; run WP; fit *a*, *b*, *c*.
- 2. Predict the minimum pad number *n* given an IR drop budget.
- 3. Perform a local search around *n*.

IR Drop Budget	Pred.	Optimal	Actual IR Drop
5%, 35mV	240	238	34.63mV
4%, 28mV	304	306	27.97mV
3%, 21mV	416	418	20.77mV
2%, 14mV	673	672	13.99mV

24-core System

Conclusions

- Walking Pads
 - Improves pad location optimization by allowing all pads to *walk* toward their local balance positions
 - Results in speedup of up to 634X relative to simulated annealing (SA)
 - Produces allocations within 0.1% of the IR drop of SA
- Analytical Model for Fast Pad Count Optimization
 - Relates pad count and max IR drop; performs fast, effective prediction after minimal evaluation and fitting

Ongoing and Future Work

- VDD-GND joint optimization
 - So far, only VDD placement
 - *Challenge*: requires transient voltage noise simulation
- Pad optimization for transient voltage noise
 - So far, only steady-state
 - Challenge: transient voltage noise simulation is very, very computationally expensive
- Pad optimization with spatial constraints
 - So far, unrestricted placement
 - I/O pads must be placed relative to I/O blocks, constraining the available pad locations
- IR-drop aware floorplanning, thermal-aware design, and power delivery for 3D ICs, too!

