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Background

= Chance of 3d integration:
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Direct chip connection using TSV
(TSV-micro bump joint)

G. H. Loh, Y. Xie: 3D Stacked Microprocessor: Are We There Yet? IEEE Micro 2010.



Power Integrity Challenges

= Power integrity challenges

= Large load current
« High device density
« Limited pins
= Long power delivery path _
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[6] J Gu, et. al. “Multi-story power delivery for supply noise reduction and low
voltage operation”, ISLPED 05.



Power Integrity in 3D stacked chips

= Prior mitigation technologies

= Static physical design
= Increase power pads or decoupling capacity [1]
« P/G TSV planning [2]

s Our work

= Dynamical run-time mitigation
« Flexible and low-cost

[1]. Taigon Song, et. al., “A Fine-Grained Co-Simulation Methodology for IR-drop Noise in
Silicon Interposer and TSV-based 3D IC”, EPEPS 2011

[2]. Zuowel Li, et. al., “Thermal-aware Power Network Design for IR Drop Reduction in 3D ICs,”
ASPDAC 2012



3D power delivery network
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Three key observations of V droop

= 1. Temporal variation
= Worst-case >> Common-case
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Three key observations of V droop

= 2. Spatial variation
= Top layer > bottom layer
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Three key observations of V drop

= 3. Application variation
= Voltage-violent > Voltage-mild

Voltage-violent <"
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Three key observations of V drop

= 3. Application variation
= Voltage-violent > Voltage-mild
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Three key observations of V drop

= 3. Application variation
= Voltage-violent > Voltage-mild
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Swimming Lane — Overview

= Temporal variation

= Common margin (C_Margin) vS. Worst-case margin (W_Margin)
= Reduce supply voltage

= Spatial variation

= Layer-independent failsafe design
= Constrain the voltage droop effect within the layer

= Application variation

= Voltage droop mitigation based on thread scheduling
=« Reduce intra-layer gap of voltage droop
=« Reduce worst voltage droop of the whole chip
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Swimming Lane — Hardware Design

= Failsafe design
= Rapidly tune the frequency in case of large voltage droop.

= Layer-independent failsafe design
= Constrain the voltage droop effect within the layer
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Swimming Lane — Software Design

Violent-first thread scheduling
= Determine the priority for thread scheduling

= Thread emergency Level prediction

= Use program activities as input
Branch mis-prediction
Cache miss
TLB miss
Long latency operation

Branch misprediction
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Long latency operation

Performance
counter register

[16] Xing Hu, et. al. “Orchestrator: Orchestrator: a low-cost solution to reduce voltage
emergencies for multi-threaded applications, DATE 13 14



Swimming Lane Software Design

Violent-first thread scheduling
= Determine the priority for thread scheduling

= Thread emergency Level prediction
= Sort thread according to their droop intensity

« If multiple threads have the same IDI, a round-robin algorithm is employed to choose threads

from different applications.
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SwimmingLane Software Design

Violent-first thread scheduling

= Determine the priority for thread scheduling
= Thread emergency Level prediction

= Sort thread according to their droop intensity

= If multiple threads have the same IDI, a round-robin algorithm is employed to choose
threads from different applications.

= Violent-first scheduling
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Experimental setup

= Simulated Layer Configuration

= GEMS

s Workloads
=« SPLASH?2

Parameters Configuration
Number of Cores 4
Clock Frequency 2.0 GHz

Fetch/Decode Width

4 instructions/cycle

Branch-Predictor Type

64 KB bimodal gshare/chooser,
1K entries

Reorder Buffer Size

128

Unified Load/Store Queue Size

64

Physical Register File

32-entry INT, 32-entry FP

INT ALU, INT Mul/Div,
FP ALU, FP Mul/Div

4/2/412

L1 Data Cache

16KB, 2-way, 32B line-size,
l-cycle latency

L1 Instruction Cache

16KB, 2-way, 32B line-size,
l-cycle latency

[.2 Unified Cache

IMB, 4-way, 64B line-size,
16-cycle latency

[I-TLB/D-TLB

64-entry, fully-associative

= Power Delivery Network
= Vnominal =14V

[5] Zheng Xu, et al., “Decoupling Capacitor Modeling and Characterization

for Power Supply Noise in 3D Systems,” ASMC 2012.
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Experimental Results

= Voltage droop reduction
= Reduce the worst voltage droop by 26 mV.
= Reduce the intra-layer voltage gap by 14 mV on average.
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Experimental Results

= Voltage droop reduction
= Reduce the worst voltage droop by 26 mV.
= Reduce the intra-layer voltage gap by 14 mV on average.

= Voltage margin reduction
o Req:gce voltage margin by 10%-> ~18% power saving
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Conclusions

= We observe non-evenly voltage droop distributed
across 3D-stacked chips.

= Propose a hardware infrastructure and violent-first
thread scheduling policy.

= Isolate timing error effect within single layer.

= Characterize thread voltage feature and conduct optimal
scheduling.

= Reduce voltage droop effect
= Mitigate 40% of voltage violations
= Reduce the voltage margin by 10%
= Save power by 18%
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