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Background 

 Chance of 3d integration: 
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G. H. Loh, Y. Xie: 3D Stacked Microprocessor: Are We There Yet? IEEE Micro 2010. 



Power Integrity Challenges 

 Power integrity challenges 

 Large load current 

 High device density 

 Limited pins 

 Long power delivery path 

 

[6] J Gu, et. al.  “Multi-story power delivery for supply noise reduction and low 
voltage operation”, ISLPED 05. 
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Power Integrity in 3D stacked chips 

 Prior mitigation technologies 
 Static physical design 

 Increase power pads or decoupling capacity [1] 

 P/G TSV planning [2] 

 

 Our work 
 Dynamical run-time mitigation 

 Flexible and low-cost 

 

[1]. Taigon Song, et. al., “A Fine-Grained Co-Simulation Methodology for IR-drop Noise in 

Silicon Interposer and TSV-based 3D IC”, EPEPS 2011 

[2].  Zuowei Li, et. al., “Thermal-aware Power Network Design for IR Drop Reduction in 3D ICs,”       

k     ASPDAC 2012 5 



3D power delivery network 
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Three key observations of V droop  

 1. Temporal variation 

 Worst-case >> Common-case 
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Three key observations of V droop  

 2. Spatial variation 

 Top layer  > bottom layer 
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Three key observations of V drop  

 3. Application variation 

 Voltage-violent > Voltage-mild 
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Three key observations of V drop  

 3. Application variation 

 Voltage-violent > Voltage-mild 

 

 

 

 Vertical resonance 
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Three key observations of V drop  

 3. Application variation  

 Voltage-violent > Voltage-mild 

 

 

 

 Vertical resonance 
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Swimming Lane – Overview 

 Temporal variation 

 Common margin (C_Margin) vs. Worst-case margin (W_Margin) 

 Reduce supply voltage 

 

 Spatial variation 

 Layer-independent failsafe design 

 Constrain the voltage droop effect within the layer 

 

 Application variation 

 Voltage droop mitigation based on thread scheduling  

 Reduce intra-layer gap of voltage droop 

 Reduce worst voltage droop of the whole chip 

 

 

12 



Swimming Lane – Hardware Design 

 Failsafe design 

 Rapidly tune the frequency in case of large voltage droop. 

 Layer-independent failsafe design 

 Constrain the voltage droop effect within the layer 
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Swimming Lane – Software Design 

 Violent-first thread scheduling 

 Determine the priority for thread scheduling 

14 

 Thread emergency Level prediction 

 Use program activities as input 

 Branch mis-prediction  

 Cache miss 

 TLB miss 

 Long latency operation 

[16] Xing Hu, et. al.  “Orchestrator: Orchestrator: a low-cost solution to reduce voltage 

emergencies for multi-threaded applications, DATE 13 

Long latency operation  
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Swimming Lane Software Design 

 Violent-first thread scheduling 

 Determine the priority for thread scheduling 
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 Thread emergency Level prediction 

 Sort thread according to their droop intensity 
 If multiple threads have the same IDI, a round-robin algorithm is employed to choose threads 

from different applications. 
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SwimmingLane Software Design 

 Violent-first thread scheduling 

 Determine the priority for thread scheduling 

 Thread emergency Level prediction 

 Sort thread according to their droop intensity 
 If multiple threads have the same IDI, a round-robin algorithm is employed to choose 

threads from different applications. 

 Violent-first scheduling 
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Experimental setup 
 Simulated Layer Configuration 

 GEMS 

 

 

 

 

 

 Workloads 

 SPLASH2 

 

 Power Delivery Network 

 Vnominal = 1.4 V 

 
[5] Zheng Xu,  et al., “Decoupling Capacitor Modeling and Characterization 

for Power Supply Noise in 3D Systems,” ASMC 2012. 
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Experimental Results 

 Voltage droop reduction 

 Reduce the worst voltage droop by 26 mV. 

 Reduce the intra-layer voltage gap by 14 mV on average. 

 

 

 

 

 

 

 

 

18 



Experimental Results 

 Voltage droop reduction 

 Reduce the worst voltage droop by 26 mV. 

 Reduce the intra-layer voltage gap by 14 mV on average. 

 Voltage margin reduction 

 Reduce voltage margin by 10% ~18% power saving 
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Conclusions 

 We observe non-evenly voltage droop distributed 

across 3D-stacked chips. 

 

 Propose a hardware infrastructure and violent-first 

thread scheduling policy. 

 Isolate timing error effect within single layer. 

 Characterize thread voltage feature and conduct optimal 

scheduling. 

  

 Reduce voltage droop effect 

 Mitigate 40% of voltage violations 

 Reduce the voltage margin by 10% 

 Save power by 18% 
20 
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