

Swimming Lane: a Composite Design to Mitigate Voltage Droop Effects in 3D Chips

Xing Hu^{1,2,3}, Yi Xu^{3,4}, Yu Hu¹ and Yuan Xie^{3,5}

¹Institute of Computing Technology, Chinese Academy of Sciences ²University of Chinese Academy of Sciences ³AMD Research China Lab ⁴Macau University of Science and Technology ⁵Pennsylvania State University

Outline

- Background and Observation
- Layer independent failsafe design
- Violent-first Scheduling
- Experimental Results
- Conclusions

Background

Chance of 3d integration:

Direct chip connection using TSV (TSV-micro bump joint)

35% Smaller Package Size

50% Less Power Consumption

8X Bandwidth improvement Multiple process integration

G. H. Loh, Y. Xie: 3D Stacked Microprocessor: Are We There Yet? IEEE Micro 2010.

Power Integrity Challenges

[6] J Gu, et. al. "Multi-story power delivery for supply noise reduction and low voltage operation", *ISLPED* 05.

Power Integrity in 3D stacked chips

Prior mitigation technologies

- Static physical design
 - Increase power pads or decoupling capacity [1]
 - P/G TSV planning [2]
- Our work
 - Dynamical run-time mitigation
 - Flexible and low-cost

- [1]. Taigon Song, et. al., "A Fine-Grained Co-Simulation Methodology for IR-drop Noise in Silicon Interposer and TSV-based 3D IC", EPEPS 2011
- [2]. Zuowei Li, et. al., "Thermal-aware Power Network Design for IR Drop Reduction in 3D ICs," ASPDAC 2012 5

3D power delivery network

Three key observations of V droop

- 1. Temporal variation
 - Worst-case >> Common-case

Three key observations of V droop

- 2. Spatial variation
 - Top layer > bottom layer

Three key observations of V drop

- 3. Application variation
 - Voltage-violent > Voltage-mild

Three key observations of V drop

- 3. Application variation
 - Voltage-violent > Voltage-mild

Three key observations of V drop

- 3. Application variation
 - Voltage-violent > Voltage-mild

Vertical resonance

Swimming Lane – Overview

Temporal variation

- Common margin (C_Margin) vs. Worst-case margin (W_Margin)
 - Reduce supply voltage
- Spatial variation
 - Layer-independent failsafe design
 - Constrain the voltage droop effect within the layer
- Application variation
 - Voltage droop mitigation based on thread scheduling
 - Reduce intra-layer gap of voltage droop
 - Reduce worst voltage droop of the whole chip

Swimming Lane – Hardware Design

- Failsafe design
 - Rapidly tune the frequency in case of large voltage droop.
- Layer-independent failsafe design
 - Constrain the voltage droop effect within the layer

Swimming Lane – Software Design Violent-first thread scheduling

- Determine the priority for thread scheduling
 - Thread emergency Level prediction
 - Use program activities as input
 - Branch mis-prediction
 - Cache miss
 - TLB miss
 - Long latency operation

[16] Xing Hu, et. al. "Orchestrator: Orchestrator: a low-cost solution to reduce voltage emergencies for multi-threaded applications, DATE 13

Swimming Lane Software Design Violent-first thread scheduling

- Determine the priority for thread scheduling
 - Thread emergency Level prediction
 - Sort thread according to their droop intensity
 - If multiple threads have the same IDI, a round-robin algorithm is employed to choose threads from different applications.

SwimmingLane Software Design Violent-first thread scheduling

- Determine the priority for thread scheduling
 - Thread emergency Level prediction
 - Sort thread according to their droop intensity
 - If multiple threads have the same IDI, a round-robin algorithm is employed to choose threads from different applications.
- Violent-first scheduling

Experimental setup

Simulated Layer Configuration

GEMS

Parameters	Configuration
Number of Cores	4
Clock Frequency	2.0 GHz
Fetch/Decode Width	4 instructions/cycle
Branch-Predictor Type	64 KB bimodal gshare/chooser,
	1K entries
Reorder Buffer Size	128
Unified Load/Store Queue Size	64
Physical Register File	32-entry INT, 32-entry FP
INT ALU, INT Mul/Div,	4/2/4/2
FP ALU, FP Mul/Div	
L1 Data Cache	16KB, 2-way, 32B line-size,
	1-cycle latency
L1 Instruction Cache	16KB, 2-way, 32B line-size,
	1-cycle latency
L2 Unified Cache	1MB, 4-way, 64B line-size,
	16-cycle latency
I-TLB/D-TLB	64-entry, fully-associative

WorkloadsSPLASH2

Power Delivery Network

Vnominal = 1.4 V

[5] Zheng Xu, et al., "Decoupling Capacitor Modeling and Characterization for Power Supply Noise in 3D Systems," *ASMC* 2012.

Experimental Results

- Voltage droop reduction
 - Reduce the worst voltage droop by 26 mV.
 - Reduce the intra-layer voltage gap by 14 mV on average.

Experimental Results

- Voltage droop reduction
 - Reduce the worst voltage droop by 26 mV.
 - Reduce the intra-layer voltage gap by 14 mV on average.
- Voltage margin reduction
 - Reduce voltage margin by $10\% \rightarrow \sim 18\%$ power saving

Conclusions

- We observe non-evenly voltage droop distributed across 3D-stacked chips.
 - Propose a hardware infrastructure and violent-first thread scheduling policy.
 - Isolate timing error effect within single layer.
 - Characterize thread voltage feature and conduct optimal scheduling.

Reduce voltage droop effect

- Mitigate 40% of voltage violations
- Reduce the voltage margin by 10%
- Save power by 18%

ASP-DAC 2014

Thank You for Your Attention

Swimming Lane: a Composite Design to Mitigate Voltage Droop Effects in 3D Chips Xing Hu^{1,2,3}, Yi Xu^{3,4}, Yu Hu¹ and Yuan Xie^{3,5}

¹Institute of Computing Technology, Chinese Academy of Sciences

²University of Chinese Academy of Sciences

³AMD Research China Lab

⁴Macau University of Science and Technology

⁵Pennsylvania State University