
Allocation of FPGA DSP-Macros in
Multi-Process High-Level Synthesis

Systems

Benjamin Carrion Schafer
The Hong Kong Polytechnic University

Department of Electronic and Information Engineering
b.carrionschafer@polyu.edu.hk

@DARC_lab

2

 Outline

• High Level Synthesis – Resource Sharing Overview
• Motivational Example

– ASIC vs. FPGA resource sharing/ functional unit DSE
• FPGA DSP-macros
• Motivation for effective methods to allocate DSP macros across

multiple-processes DSP-macro allocation method: Allocation of
DSP-macros for Multiple Processes (ADSP_MULTP)
– Step 1 :Functional Unit Design Space Exploration
– Step 2 : DSP-macro sensitivity computation
– Step 3 : Sorting based on sensitivity
– Step 4 : Allocate DSP-macros

• ADSP_MULTP variations
• Experimental Setup and Results
• Conclusions

3

High Level Synthesis 101

+,-,*,/
Delay
Area

int A,B,C,D;
int E,F;
main(){
int x;
X=A+B;
E=X*D;
F=(B+C)*X
}

Const
add32s : 1
mul32s : 1

Clock step1

Clock step2

freq

Clock step3

1/freq +

x +

x

D A B C

E F

Allocation

Scheduling

+

x +

x

D A B C

Binding

Add #1

Mult #1

4

HLS Resource Sharing

S0

S1

S2

S0

S1

S2

A B

C

D

+ *

F

E

3 cycles

char A,B,C,D;
char E,F;
main(){
char X;
X = A + B;
E = X * D;
F = (B + C) * X;
}

＋

A B C D

X

F E

+ +

 * *

Behavioral Description in C

+ : 1

* : 1

+ : 2

* : 2 1 cycle

Delay:2T

Delay:1T

RTL

FU

constraints

1

2

ASIC Resource Sharing/FU DSE

• Resource Sharing
– A single functional unit (FU) is re-used among different computational

operations in the behavioral description
– Can lead to smaller designs

• 9-TAP FIR filter example targeting ASIC Nangate 45nm@100MHz

5

Datapath FSM

 for(i=0;i<9;i++)

 sum += ary[i] * coeff[i] ;

FPGA Resource Sharing/FU DSE

• Same FIR filter targeting a Xilinx Virtex6 FPGA
• In default mode Area↑ when #FU↓ because the FUs (MAC) are now mapped to the

FPGAs DSP macros
• DSP macros are free in terms of area, while Muxes are not

6

DSP Macros

 for(i=0;i<9;i++)

 sum += ary[i] * coeff[i] ;

LUTs

LUTs

DSP Macros

Observations when targeting FPGAs

• Always use FPGAs DSP-macros
• Reduce the amount for resource sharing as much

as possible
BUT
• FPGAs have increased to a point that entire systems

can now be implemented on a single device
• HLS is a single process synthesis One process is

synthesized and optimized at a time

 An Effective method to allocate DSP macros across
multiple-processes is needed which minimizes the
total design Area

7

FPGAs DSP-macros

• High-end FPGAs have large number of DSP-macros, but cannot be used for consumer
products

• Consumer products a very price sensitive
• DSP applications extremely DSP-macro intensive
• FIR filter consumes 9 DSP48E1s macros and 24 Slice LUTs when fully parallelized

8

FPGA # DSP-macros
(family
dependent)

DSP-macros Price ($)

Xilinx Virtex7 (high-end) 1,260-3,600 25x18 multiplier, 48-bit accumulator, and
pre-adder

X,000 USD

Xilinx Artix7 (low-end) 60-740 25x18 multiplier, 48-bit accumulator, and
pre-adder

X USD

Altera Stratix5 (high-end) 512-3,926 18x18multiplier – variable precision
multipliers, 64-bit
accumulator

X,000 USD

Altera Cyclone5 (60-740) 60-740 18x18multiplier– variable precision
multipliers, 64-bit
accumulator

X USD

C/SC1 C/SC2 …. C/SCN

Functional Unit (FU)

Design Space Exploration (DSE)

Area

Latency

Area

Latency

Area

Latency

ADSP_MULTP

Area

Latency

Area

Latency

Area

Latency

FPGA (Max

DSPs)

Latencies

DSPs

LUTs

DSPs

LUTs LUTs

DSPs

Proposed Method : Allocation of DSP-macros for
Multiple Processes (ADSP_MULTP)

• 2 main steps sub-divided into 4 smaller
– Perform FU Design Space Exploration (DSE) for each process
– Decided how to best allocated the available DSP-macros given a set of latency

constraints for each process

9

Area

L1 L2 Latency

Area

Latency

DSP-macros only

Area

Latency

DSPs

LUTs

DSPs + LUTs

Max FUs Min FUs

Area

Latency

DSPs

LUTs only

DSPs + LUTs

(a) (b)

(c) (d)

Step 1: FU Design Space Exploration

• Perform FU Design Space Exploration (DSE) for each process by:
1. Synthesize behavioral description in default mode to maximize parallelism and

extract FU constraint file with max FUs needed
2. Reducing the number of FUs by 20% in constraint FILE
3. Map the FUs to DSP-macros and LUTs

10

Mapping MAC to DSP-macros or LUTs

• HLS tools do not allow fine grain controllability of where
to map single operations. E.g.

 for(i=0;i<9;i++)

 sum += ary[i] * coeff[i] ;

• How to map X MAC to DSP-macros and 9-X to LUTs?

RTL generated by HLS is parsed by the FU explorer and

automatically edited adding FPGA vendor specific

synthesis directive. E.g. Xilinx:
attribute use dsp48 : string;

attribute use dsp48 of mul16s9ot : signal is "no";

attribute use dsp48 of mul16s8ot : signal is "yes";

11 Need to make sure that timing is still met after logic synthesis !

Motivation for Full FU DSE

• Most designs returned by the DSE are not
Pareto-optimal, although parabolic behavior in
some cases. BUT:

• Often the design latency is a global constraint

(either single or range)
• This constraint can vary during different project

stages e.g. when the process is integrated into
the system or when it is re-used in later
projects.

 Full exploration results are stored and the most
efficient implementation is selected when the
latency or latency interval constraint is
specified.

Only those designs within the specified latency
interval are considered by our method

12

Step 2: DSP-macro Sensitivity Calculation

• Use DSP-macro Sensitivity S as priority criteria to map MAC
operations to DSP-macro or LUTs

• If latency range is given use the Design Family (DF) with design
with smallest area

• S is computed for the given latency
Δ Area= Area max - Area min;
Δ DSP= DSPs max - DSPs min;
 S=Δ Area/Δ DSP;

13

Area

L1 Latency

Area

DSPs

ProcessN (PN)

Step 3: Sensitivity Based Process Sorting

• Sort all the processes in the given system
using S as sorting criteria

 SP1 > SP2 > SPn

14

Area

L1

Latency

Area

DSPs

Process1 (P1)
Process2 (P2)

SP1 SP2

Step 4: DSP-macro allocations

• Greedy DSP-macro allocation process
• Allocated DSP-macros to process Pi with highest

Sensitivity Si until no more DSP-macros are needed OR
the DSP-macro budget is exhausted

 With SP1 > SP2 > SPn

15

Process1 (P1) Process2 (P2) ProcessN (PN)

ADSP_MULTP Variation

Method Weakness
• Assumes that the effect of mapping a

MAC onto a DSP-macro is linear
within the same design family.

• Size of mapped muxes grows in a
none-linear way and hence the
sensitivity S

16

Area

L1 Latency

Area

DSPs

• To better understand the impact of the non-linearity in
the sensitivity a variation of our proposed method was
implemented ADSP_MULTP fast brute.

• Exact same steps as the original method except step4
performs a brute force search trying all possible DSP-
macro assignments within the selected DFs only

Experimental Setup

• 6 DSP intensive applications chose and grouped together
• Generate 8 complex benchmarks

• The HLS tool used is CyberWorkBench v.5.2 from NEC
• The number of LUTs and registers reported are extracted

from Xilinx’s ISE 14.2
• FPGA is a Xilinx Virtex 6 VCX130T
• Target HLS frequency is 75MHz

17

Experimental Results

• Brute force vs. ADSP_MULTP fast_brute vs. ADSP_MULTP
• DSP-macro budget is set to 75% of the total number of multiplications that each complex

benchmark would need in order to maximize its parallelism
• Brute force running up to 4 days
• Random latency range that covers less than 1/4 of the total latency range was chosen for

each of the processes

18

Summary and Conclusions

• Motivated the need to have effective methods to
assign DSP-macros to multi-process systems

• Presented a method to allocate FPGA’s DSP-macros
efficiently across multiple processes synthesized
using HLS

• Introduced the concept of sensitivity S to allocate
DSP-macros across the different processes

• Demonstrated that our method achieves very good
results compared to the brute force optimal
solutions extremely quick

19

