Data Compression via Logic Synthesis

Luca Amarid!, Pierre-Emmanuel Gaillardon!, Andreas Burgz,
Giovanni De Micheli!

Integrated Systems Laboratory (LSI), EPFL, Switzerland!

Telecommunication Circuits Laboratory (TCL), EPFL, Switzerland?

Thursday, January 23, 2014

ECOLE POLYTECHNIQUE LS I

FEDERALE DE LAUSANNE Integrated Systems Laboratory

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression

e Software and hardware applications are committed to reduce the
footprint and resource usage of data.

e Standard data compression: data decorrelation + entropy encoding.

e EDA methods are powerful and scalable: they solve also non-EDA
problems. Logic synthesis is a primary EDA application.

Can Modern Logic Synthesis Help Compressing Binary Data?

1/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Outline

® Introduction and Motivation

@® Data Compression via Logic Synthesis

© Experimental Results

® Conclusions

2/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

@ Introduction and Motivation

3/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

(Brief) Introduction on Data Compression
(Lossless) Data Compression: data decorrelation 4 entropy enconding

e Data decorrelation: * Entropy enconding:

Decorrelating .
linear 205
transformation
0
0 0.5 1.0
Pr(X =1)

m Reduces the autocorrelation
of the input data.

m Tipically achieved via linear
decorrelation transforms.

m Karhunen-Loeve Transform

m Compress an input data down
to its entropy.

m With exact probabilistic
model, entropy enconding is

- : optimum.
(;_(LT)f' Dlsclge(t:eTCosme m Huffman coding, arithmetic
ransform () etc. coding, etc.

4/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Why Are We Interested in a Different Approach?

With the perfect data decorrelation, entropy encoding is optimal.
Unfortunately, perfect data decorrelation is intractable.

How to unlock ultimate lossless data compression?

Approach the problem from a new angle.
Logic synthesis shares similar optimization criteria.

Use logic synthesis as core data compression engine.

5/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

@® Data Compression via Logic Synthesis

6/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression via Logic Synthesis

Logic synthesis: Boolean function = minimal logic circuit (size).

Data compression: Binary data = minimal representation (# bits).

Alternative Data Compression Flow

Binary data (N bits)

U/ Function Description

Boolean function

U» Logic Synthesis

Optimized logic circuit (M bits)

7/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression via Logic Synthesis — Example
Prior art example: Binary data = Truth table = 2-level minimized form
Input binary data B = 0001001111111111

B is the entry vector of a truth table for a 4 inputs Boolean function.

x w y z B
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

2-level logic synthesis: B = x 4+ yw + yz

8/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression via Logic Synthesis — Example

Data Decompression:
B(0) =(r+yw+yz)@Q(x=0,w=0,y=0,2=0)=0
B(1)=(zr+yw+yz)Qz=0,w=0,y=0,2=1) =0
B(2)=(zx+yw+yz)Qz=0,w=0,y=1,2=0) =0
BBB)=(x+yw+y2)@z=0,w=0,y=1,2=1)=1

In general:
for(i=0;i< 2#”‘”"3;i++)
B(i) = (z + yw + yz) Q(BR(%))
endfor

9/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression via Logic Synthesis — Scalability

Monolithic truth tables may hide compression opportunities.

Very often data to be compressed is generated sequentially.

Storing everything in a single output is not efficient.

10/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

New Logic Model for Data Compression

Binary String

B=0001010101010001110101. .. 00010
| Jl Jl Jl J1 Jl
So S1 S2 S3 Sa4 Sm1

Soo0 Sooi Soio Soi1 S100 SBR(M 1)

Logic Grcuit

i nput BR(i) } S
—

e Partition the input in M sub-blocks of fixed length L = |B|/M.
e Describe a logic circuit that stimulated by BR(i) generates S;.
e Simulating the logic circuit it is possible to build back B.

11/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

New Logic Model for Data Compression — Example

M8, L=3 Binary String
B=000001010011000001110111
I_II_II_II_II_II_II_II_I
S1 S2 S8 Ss Se S7
S2 | Ss|Sa]| S5)| Se| S
000]001]110111

of the sub-bl ocks

So | S
000|001]010]011

Focus on the first bit
2|Tolat 2| Tot 12| ol 2l 2|1 ol 1721 o 21 2
S1 | S2 | S8 S4)|Ss| Se| S7
000001010012)J000])001]110]112
is logic 1 when

lolal2flol 1l 2

The first bit
lol 12 OR lol1l2

=lol1

Logic Gircuit

12/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Describing the Logic Circuit: Algorithm

Algorithm 1 G function description.

INPUT: binary strings {So, S, ..., Sp—1} (L-bits per each)
OUTPUT: SOP representation for G function
FUNCTION: Construct G({So, S1, ..., Snmr—1})
forall k=0:L—1do
foralli=0: M —1do
if (Si(k) ==1) then
add cube BR(7) to SOP for the k-th output of G
end if
end for
end for

13/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression Flow

Compression Flow

Binary data (NN, bits)
\U« Partitioning
Paritioned binary data (M sub-blocks long |B|/M each)

‘U’ SOP Description Algorithm

G Function Description

\U/ Multi-level Logic Synthesis

Optimized logic circuit for G (NN, bits)

14/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Improving the Compression/Synthesis Efficiency

e Let us fix a decompression sense:

e The (compressed) logic circuit G can be stimulated by BR(i) to
produce S(7) iff it has been previously stimulated by BR(i — 1) to
produce S(i — 1).

e This has no impact on the decompression performance.

e But S(i—1) = G(BR(i)) can now be used as additional input to G.

output (Si)
state
logic circuit for G reg'S‘S}f'
i nput BR(i)}
—
previous :
state
Si-1 :
s

e With this information, the logic synthesizer has more freedom.
e Also S(i — 1), S(i — 2) etc. can be used.

15/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Improving the Compression/Synthesis Efficiency —
Motivation Example

Suppose we want to compress a binary string generated by:
F, = (¢™ —¢™)//5 with ¢ = 1.6180339887... and ¢ = —1/¢.

e Suppose we have no knowledge about S(i — 1), S(i — 2), etc.

The logic synthesizer receives as inputs only BR(i).

Even if the synthesizer is very powerful it is unlikely to recognize

Fy = (" = 4™ /V5.

16/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Improving the Compression/Synthesis Efficiency —
Motivation Example

e Suppose we still want to compress a binary string generated by:
F, = (" — ™) /V/5 with ¢ = 1.6180339887... and ¢ = —1/¢.

e Suppose we have knowledge about S(i — 1), S(i — 2).

The decompression has a fixed sense (Sp, S1, .52, ..., Svr—1)-

The logic synthesizer receives as inputs BR(i) and S(i — 1),
S(i—2).

It is much easier for a synthesizer to recognize F,, = F,,_1 + F,,_o
(Fibonacci sequence).

17/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Synthesis facilitated Logic Circuit Description

Algorithm 2 Synthesis-facilitated description of G.

INPUT: binary strings {So, S1, ..., Smr—1} (L-bits per each)
OUTPUT: SOP representation for G function
FUNCTION: Construct G({So, S1, ..., Sm—1})
forall k=0:L—1do
foralli=0: M —1do
if (Si(k) ==1) then
add cube BR(%) to SOP for the k-th output of G
if (Si—l is unique in {SQ,Sl, ...,SM_1}) then
add cube S;_1 to SOP for the k-th output of G
end if
end if
end for
end for

S;_1 can be used as alternative
(logical or with BR(:)) information to describe GG

18/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Improved Data Compression Flow

Improved Compression Flow

Binary data (NN, bits)
~U/ Partitioning
Paritioned binary data (M sub-blocks long |B|/M each)
‘U’ BR(i)/S(i — 1) Description
G Function Description

\U/ Multi-level Logic Synthesis

Optimized logic circuit for G (NN, bits)

19/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

What if the Synthesis is not Satisfactory?

e For hard functions logic synthesis may lead to very large circuits or
too long runtime.

e But we want to be fast and at the same time efficient.

e |dea: consider one output bit of S; per time.

e If the synthesis of such output bit is too hard (timeout or not
advantageous) — use entropy enconding for the corresponding bits.

e Otherwise keep the synthesis results.

e Merge synthesis results with entropy encoding results to get final
compressed data.

20/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Final Data Compression Flow

Final Compression Flow
Binary data (NN, bits)
\U/ Partitioning
Paritioned binary data (M sub-blocks long |B|/M each)
U/ BR(i)/S(i — 1) Description
G Function Description

\U/ Muilti-level Logic Synthesis

Optimized logic circuit for G

Entropy encoding of ~U/ bits too hard to synthesize

Compressed data (synthesis + entropy encoding results) (V. bits)

21/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Final Decompression Flow

out put (Si)
state
logic circuit for G reggizer
i nput BR(i):
—:
previous :
state
Si-1 :
—:

e Use FSM to rebuild back part of the S;.
e Entropy decoding of the hard to synthesize bits.

e Interleave the results (recalling back the hard bits position in S;).

22/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Final Decompression Flow — Example

out put (Si)
state
logic circuit for G reggﬁier

.................. -

i nput BR(i):
—:

previous :
state
Si-1 :

—:

e From the FSM (M = 3): X = 000111010 = {000, 111,010}.
e Entropy decoding (2" index in S;): Y = 101.
e Interleaving B = {0100, 1011,0110} = 010010110110.

23/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

© Experimental Results

24/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Setup 1/2

e Logic synthesis engine:
m ABC: resyn2 optimization script and ABC mapper (academic).

Entropy encoding: ZIP tool.

Algorithms implemented in C language.

Interaction with external tools: Perl language.

e Comparison with:
ZIP tool.

DCT + ZIP tool.
bzip2 tool.

Tzip tool.

25/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Setup 2/2

e Benchmarks deriving from casual processes:

m Perfect line measurement.

m Line measurement + white noise.

m Parabolic measurement.

m Simple computer (logic) program generating binary data.

26/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Results: Memory Footprint

l Bench | Size | ZIP | DCT+ZIP | bzip2 | Tzip This work
2.2 MB | 208 KB 868 KB 316 KB | 60 KB 8 KB
Linear 25 MB | 2.1 MB 8.3 MB 3.1 MB | 883 KB 8 KB
287 MB | 21 MB 81 MB 31MB | 3.4 MB 302 KB
2.2 MB | 264 KB 872 KB 258 KB | 212 KB 80 KB
Linear + Noise | 25 MB | 2.7 MB 8.4 MB 26 MB | 2.4 MB 700 KB
287 MB | 27 MB 84 MB 30 MB | 23 MB 7.1 MB
3.3 MB | 484 KB 816 KB 532 KB | 272 KB 8 KB
Quadratic 39 MB | 5.3 MB 7.6 MB 6.1 MB | 3.3 MB 16 KB
449 MB | 59 MB 71 MB 67 MB | 40 MB 566 KB
1.6 MB | 116 KB 304 KB 124 KB | 44 KB 8 KB
Program 20 MB | 1.2 MB 3.2 MB 1.5 MB | 796 KB 8 KB
230 MB | 12 MB 31 MB 15 MB | 3.8 MB 234 KB

27/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Results: Memory Footprint

| Bench | Size | ZIP [DCT+ZIP | bzip2 [7zip [This work
22 MB [208 KB [868 KB | 316 KB | 60 KB 8 KB
Linear 25MB [21MB | 83MB |31MB[88KB| 8KB
2867MB | 2IMB | 8IMB | 31MB | 34 MB | 302KB
22MB [264 KB [872 KB [258 KB [212 KB | 80 KB
Linear + Noise | 25 MB [27 MB | 84 MB |26 MB [24 MB | 700 KB
2867MB | 27MB | 84MB | 30MB | 22 MB | 7.1 MB
33MB [484 KB [816 KB [532KB [272KB | 8KB
Quadratic 39MB [53MB | 76 MB |61 MB |33MB | 16 KB
440 MB [50 MB | 7IMB | 67 MB | 40 MB | 566 KB
1.6 MB | 116 KB | 304 KB [124 KB [44 KB 8 KB
Program 20MB [12MB | 32MB | 15MB [796 KB | 8KB
230 MB | 12MB | 31MB | 15MB [3.8 MB | 234 KB

Data compression via logic synthesis presents best results.

Logic synthesis identifies the function correlating a data set.

28/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Results: Memory Footprint

l Bench | Size | ZIP | DCT+ZIP | bzip2 | Tzip | This work

2.2 MB | 208 KB 868 KB 316 KB | 60 KB 8 KB

Linear 25 MB | 2.1 MB 8.3 MB 3.1 MB | 888 KB 8 KB

287 MB | 21 MB 81 MB 31 MB | 3.4 MB 302 KB

2.2 MB | 264 KB 872 KB 258 KB | 212 KB 80 KB

Linear + Noise | 25 MB | 2.7 MB 8.4 MB 26 MB | 24 MB | 700 KB
287 MB | 27 MB 84 MB 30 MB | 23 MB 7.1 MB

3.3 MB | 484 KB 816 KB 532 KB | 272 KB 8 KB

Quadratic 39 MB | 5.3 MB 7.6 MB 6.1 MB | 3.3 MB 16 KB
449 MB | 59 MB 71 MB 67 MB | 40 MB 566 KB

1.6 MB | 116 KB 304 KB 124 KB | 44 KB 8 KB

Program 20 MB | 1.2 MB 3.2 MB 1.5 MB | 796 KB 8 KB
230 MB | 12 MB 31 MB 15 MB | 3.8 MB 234 KB

AWGN is identified in the flow — bits hard to synthesize.

Entropy encoding handle AWGN (anyway not compressible).

Significant compression for the remaining bits.

29/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Results: Runtime

e 1% place: ZIP.

e 27 place: bzip2 - 1.5xZIP.

e 3" place: 7zip - 8xZIP.

e 4 place: this work - 12xZIP.

e ZIP is the fastest tool - based on very fast algorithms.
e Our proposal involves logic synthesis - a time consuming technique.

e Speed-up is possible by integrating logic synthesis and entropy
encoding techniques in the same code.

30/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

@ Conclusions

31/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Conclusions

e Software and hardware applications are committed to reduce the
footprint and resource usage of data.

e In this work we use logic synthesis to compact the size binary data.

e Data compression via logic synthesis: create a Boolean function
describing the binary data + minimize such Boolean function.

e An expressive logic model is key to find the underlying logic function
generating the input data.

e QOur proposal is intended for highly-correlated data sets.

e Our proposal generates the best results as compared to state-of-art
compression tools at the price of runtime overhead.

32/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Questions?

Thank you for your attention.

33/33

	Introduction and Motivation
	Data Compression via Logic Synthesis
	Experimental Results
	Conclusions

