
Integrated Systems Laboratory

Data Compression via Logic Synthesis

Luca Amarú1, Pierre-Emmanuel Gaillardon1, Andreas Burg2,
Giovanni De Micheli1

Integrated Systems Laboratory (LSI), EPFL, Switzerland1

Telecommunication Circuits Laboratory (TCL), EPFL, Switzerland2

Thursday, January 23, 2014

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression

• Software and hardware applications are committed to reduce the
footprint and resource usage of data.

• Standard data compression: data decorrelation + entropy encoding.

• EDA methods are powerful and scalable: they solve also non-EDA
problems. Logic synthesis is a primary EDA application.

Can Modern Logic Synthesis Help Compressing Binary Data?

1/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Outline

1 Introduction and Motivation

2 Data Compression via Logic Synthesis

3 Experimental Results

4 Conclusions

2/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

1 Introduction and Motivation

2 Data Compression via Logic Synthesis

3 Experimental Results

4 Conclusions

3/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

(Brief) Introduction on Data Compression

(Lossless) Data Compression: data decorrelation + entropy enconding

• Data decorrelation:

Reduces the autocorrelation
of the input data.
Tipically achieved via linear
decorrelation transforms.
Karhunen-Loeve Transform
(KLT), Discrete Cosine
Transform (DCT) etc.

• Entropy enconding:

Compress an input data down
to its entropy.
With exact probabilistic
model, entropy enconding is
optimum.
Huffman coding, arithmetic
coding, etc.

4/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Why Are We Interested in a Different Approach?

With the perfect data decorrelation, entropy encoding is optimal.

Unfortunately, perfect data decorrelation is intractable.

How to unlock ultimate lossless data compression?

Approach the problem from a new angle.

Logic synthesis shares similar optimization criteria.

Use logic synthesis as core data compression engine.

5/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

1 Introduction and Motivation

2 Data Compression via Logic Synthesis

3 Experimental Results

4 Conclusions

6/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression via Logic Synthesis

Logic synthesis: Boolean function ⇒ minimal logic circuit (size).

Data compression: Binary data ⇒ minimal representation (# bits).

Alternative Data Compression Flow

Binary data (N bits)

⇓ Function Description

Boolean function

⇓ Logic Synthesis

Optimized logic circuit (M bits)

7/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression via Logic Synthesis – Example

Prior art example: Binary data ⇒ Truth table ⇒ 2-level minimized form

Input binary data B = 0001001111111111

B is the entry vector of a truth table for a 4 inputs Boolean function.

x w y z B
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

2-level logic synthesis: B ⇒ x + yw + yz

8/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression via Logic Synthesis – Example

Data Decompression:

B(0) = (x + yw + yz)@(x = 0, w = 0, y = 0, z = 0) = 0

B(1) = (x + yw + yz)@(x = 0, w = 0, y = 0, z = 1) = 0

B(2) = (x + yw + yz)@(x = 0, w = 0, y = 1, z = 0) = 0

B(3) = (x + yw + yz)@(x = 0, w = 0, y = 1, z = 1) = 1

...

In general:

for(i=0;i< 2#vars;i++)

B(i) = (x + yw + yz)@(BR(i))

endfor

9/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression via Logic Synthesis – Scalability

Monolithic truth tables may hide compression opportunities.

Very often data to be compressed is generated sequentially.

Storing everything in a single output is not efficient.

10/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

New Logic Model for Data Compression

B=0001010101010001110101...00010

S0 S1 S2 S3 S4 SM-1
S000 S001 S010 S011 S100 SBR(M-1)

input BR(i) Si}
Logic Circuit

Binary String

• Partition the input in M sub-blocks of fixed length L = |B|/M .

• Describe a logic circuit that stimulated by BR(i) generates Si.

• Simulating the logic circuit it is possible to build back B.

11/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

New Logic Model for Data Compression – Example

B=000001010011000001110111

S0 S1 S2 S3 S4

Binary StringM=8, L=3

S5 S6 S7

Focus on the first bit of the sub-blocks

011

S0 S1 S2 S3 S4 S5 S6 S7

000 001 000 110 111010 001

011

S0 S1 S2 S3 S4 S5 S6 S7

000 001 000 110 111010 001

I0I1I2 I0I1I2 I0I1I2 I0I1I2 I0I1I2 I0I1I2 I0I1I2 I0I1I2

The first bit is logic 1 when

I0I1I2 OR I0I1I2

=I0I1

Si(0)

I2

I0
I1

Logic for
Si(1) Si(2)

Si(1)

Si(2)

*

Logic Circuit

12/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Describing the Logic Circuit: Algorithm

Algorithm 1 G function description.

INPUT: binary strings {S0, S1, ..., SM−1} (L-bits per each)
OUTPUT: SOP representation for G function
FUNCTION: Construct G({S0, S1, ..., SM−1})

for all k = 0 : L− 1 do
for all i = 0 :M − 1 do

if (Si(k) == 1) then
add cube BR(i) to SOP for the k-th output of G

end if
end for

end for

13/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Data Compression Flow

Compression Flow

Binary data (No bits)

⇓ Partitioning

Paritioned binary data (M sub-blocks long |B|/M each)

⇓ SOP Description Algorithm

G Function Description

⇓ Multi-level Logic Synthesis

Optimized logic circuit for G (Nc bits)

14/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Improving the Compression/Synthesis Efficiency

• Let us fix a decompression sense:
• The (compressed) logic circuit G can be stimulated by BR(i) to

produce S(i) iff it has been previously stimulated by BR(i− 1) to
produce S(i− 1).

• This has no impact on the decompression performance.
• But S(i− 1) = G(BR(i)) can now be used as additional input to G.

input BR(i)

previous
 state
 Si-1

 state
 register
 Si-1

output (Si)

logic circuit for G

• With this information, the logic synthesizer has more freedom.
• Also S(i− 1), S(i− 2) etc. can be used.

15/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Improving the Compression/Synthesis Efficiency –
Motivation Example

• Suppose we want to compress a binary string generated by:

• Fn = (ϕn − ψn)/
√
5 with ϕ = 1.6180339887... and ψ = −1/ϕ.

• Suppose we have no knowledge about S(i− 1), S(i− 2), etc.

• The logic synthesizer receives as inputs only BR(i).

• Even if the synthesizer is very powerful it is unlikely to recognize
Fn = (ϕn − ψn)/

√
5.

16/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Improving the Compression/Synthesis Efficiency –
Motivation Example

• Suppose we still want to compress a binary string generated by:

• Fn = (ϕn − ψn)/
√
5 with ϕ = 1.6180339887... and ψ = −1/ϕ.

• Suppose we have knowledge about S(i− 1), S(i− 2).

• The decompression has a fixed sense (S0, S1, S2, ..., SM−1).

• The logic synthesizer receives as inputs BR(i) and S(i− 1),
S(i− 2).

• It is much easier for a synthesizer to recognize Fn = Fn−1 + Fn−2

(Fibonacci sequence).

17/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Synthesis facilitated Logic Circuit Description

Algorithm 2 Synthesis-facilitated description of G.
INPUT: binary strings {S0, S1, ..., SM−1} (L-bits per each)
OUTPUT: SOP representation for G function
FUNCTION: Construct G({S0, S1, ..., SM−1})

for all k = 0 : L− 1 do
for all i = 0 : M − 1 do

if (Si(k) == 1) then
add cube BR(i) to SOP for the k-th output of G
if (Si−1 is unique in {S0, S1, ..., SM−1}) then

add cube Si−1 to SOP for the k-th output of G
end if

end if
end for

end for

Si−1 can be used as alternative
(logical or with BR(i)) information to describe G

18/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Improved Data Compression Flow

Improved Compression Flow

Binary data (No bits)

⇓ Partitioning

Paritioned binary data (M sub-blocks long |B|/M each)

⇓ BR(i)/S(i− 1) Description

G Function Description

⇓ Multi-level Logic Synthesis

Optimized logic circuit for G (Nc bits)

19/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

What if the Synthesis is not Satisfactory?

• For hard functions logic synthesis may lead to very large circuits or
too long runtime.

• But we want to be fast and at the same time efficient.

• Idea: consider one output bit of Si per time.

• If the synthesis of such output bit is too hard (timeout or not
advantageous) – use entropy enconding for the corresponding bits.

• Otherwise keep the synthesis results.

• Merge synthesis results with entropy encoding results to get final
compressed data.

20/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Final Data Compression Flow

Final Compression Flow

Binary data (No bits)

⇓ Partitioning

Paritioned binary data (M sub-blocks long |B|/M each)

⇓ BR(i)/S(i− 1) Description

G Function Description

⇓ Multi-level Logic Synthesis

Optimized logic circuit for G

Entropy encoding of ⇓ bits too hard to synthesize

Compressed data (synthesis + entropy encoding results) (Nc bits)

21/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Final Decompression Flow

input BR(i)

previous
 state
 Si-1

 state
 register
 Si-1

output (Si)

logic circuit for G

• Use FSM to rebuild back part of the Si.

• Entropy decoding of the hard to synthesize bits.

• Interleave the results (recalling back the hard bits position in Si).

22/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Final Decompression Flow – Example

input BR(i)

previous
 state
 Si-1

 state
 register
 Si-1

output (Si)

logic circuit for G

• From the FSM (M = 3): X = 000111010 = {000, 111, 010}.
• Entropy decoding (2nd index in Si): Y = 101.

• Interleaving B = {0100, 1011, 0110} = 010010110110.

23/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

1 Introduction and Motivation

2 Data Compression via Logic Synthesis

3 Experimental Results

4 Conclusions

24/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Setup 1/2

• Logic synthesis engine:

ABC: resyn2 optimization script and ABC mapper (academic).

• Entropy encoding: ZIP tool.

• Algorithms implemented in C language.

• Interaction with external tools: Perl language.

• Comparison with:

ZIP tool.
DCT + ZIP tool.
bzip2 tool.
7zip tool.

25/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Setup 2/2

• Benchmarks deriving from casual processes:

Perfect line measurement.
Line measurement + white noise.
Parabolic measurement.
Simple computer (logic) program generating binary data.

26/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Results: Memory Footprint

Bench Size ZIP DCT+ZIP bzip2 7zip This work

Linear
2.2 MB 208 KB 868 KB 316 KB 60 KB 8 KB
25 MB 2.1 MB 8.3 MB 3.1 MB 888 KB 8 KB
287 MB 21 MB 81 MB 31 MB 3.4 MB 302 KB

Linear + Noise
2.2 MB 264 KB 872 KB 258 KB 212 KB 80 KB
25 MB 2.7 MB 8.4 MB 2.6 MB 2.4 MB 700 KB
287 MB 27 MB 84 MB 30 MB 23 MB 7.1 MB

Quadratic
3.3 MB 484 KB 816 KB 532 KB 272 KB 8 KB
39 MB 5.3 MB 7.6 MB 6.1 MB 3.3 MB 16 KB
449 MB 59 MB 71 MB 67 MB 40 MB 566 KB

Program
1.6 MB 116 KB 304 KB 124 KB 44 KB 8 KB
20 MB 1.2 MB 3.2 MB 1.5 MB 796 KB 8 KB
230 MB 12 MB 31 MB 15 MB 3.8 MB 234 KB

27/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Results: Memory Footprint

Bench Size ZIP DCT+ZIP bzip2 7zip This work

Linear
2.2 MB 208 KB 868 KB 316 KB 60 KB 8 KB
25 MB 2.1 MB 8.3 MB 3.1 MB 888 KB 8 KB
287 MB 21 MB 81 MB 31 MB 3.4 MB 302 KB

Linear + Noise
2.2 MB 264 KB 872 KB 258 KB 212 KB 80 KB
25 MB 2.7 MB 8.4 MB 2.6 MB 2.4 MB 700 KB
287 MB 27 MB 84 MB 30 MB 23 MB 7.1 MB

Quadratic
3.3 MB 484 KB 816 KB 532 KB 272 KB 8 KB
39 MB 5.3 MB 7.6 MB 6.1 MB 3.3 MB 16 KB
449 MB 59 MB 71 MB 67 MB 40 MB 566 KB

Program
1.6 MB 116 KB 304 KB 124 KB 44 KB 8 KB
20 MB 1.2 MB 3.2 MB 1.5 MB 796 KB 8 KB
230 MB 12 MB 31 MB 15 MB 3.8 MB 234 KB

Data compression via logic synthesis presents best results.

Logic synthesis identifies the function correlating a data set.

28/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Results: Memory Footprint
Bench Size ZIP DCT+ZIP bzip2 7zip This work

Linear
2.2 MB 208 KB 868 KB 316 KB 60 KB 8 KB
25 MB 2.1 MB 8.3 MB 3.1 MB 888 KB 8 KB
287 MB 21 MB 81 MB 31 MB 3.4 MB 302 KB

Linear + Noise
2.2 MB 264 KB 872 KB 258 KB 212 KB 80 KB
25 MB 2.7 MB 8.4 MB 2.6 MB 2.4 MB 700 KB
287 MB 27 MB 84 MB 30 MB 23 MB 7.1 MB

Quadratic
3.3 MB 484 KB 816 KB 532 KB 272 KB 8 KB
39 MB 5.3 MB 7.6 MB 6.1 MB 3.3 MB 16 KB
449 MB 59 MB 71 MB 67 MB 40 MB 566 KB

Program
1.6 MB 116 KB 304 KB 124 KB 44 KB 8 KB
20 MB 1.2 MB 3.2 MB 1.5 MB 796 KB 8 KB
230 MB 12 MB 31 MB 15 MB 3.8 MB 234 KB

AWGN is identified in the flow – bits hard to synthesize.

Entropy encoding handle AWGN (anyway not compressible).

Significant compression for the remaining bits.

29/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Experimental Results: Runtime

• 1st place: ZIP.

• 2nd place: bzip2 - 1.5×ZIP.

• 3rd place: 7zip - 8×ZIP.

• 4th place: this work - 12×ZIP.

• ZIP is the fastest tool - based on very fast algorithms.

• Our proposal involves logic synthesis - a time consuming technique.

• Speed-up is possible by integrating logic synthesis and entropy
encoding techniques in the same code.

30/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

1 Introduction and Motivation

2 Data Compression via Logic Synthesis

3 Experimental Results

4 Conclusions

31/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Conclusions

• Software and hardware applications are committed to reduce the
footprint and resource usage of data.

• In this work we use logic synthesis to compact the size binary data.

• Data compression via logic synthesis: create a Boolean function
describing the binary data + minimize such Boolean function.

• An expressive logic model is key to find the underlying logic function
generating the input data.

• Our proposal is intended for highly-correlated data sets.

• Our proposal generates the best results as compared to state-of-art
compression tools at the price of runtime overhead.

32/33

Introduction and Motivation Data Compression via Logic Synthesis Experimental Results Conclusions

Questions?

Thank you for your attention.

33/33

	Introduction and Motivation
	Data Compression via Logic Synthesis
	Experimental Results
	Conclusions

