
Timing Anomalies in Multi-core
Architectures due to the Interference

on the Shared Resources

Hardik Shah, Kai Huang and Alois Knoll
Robotics and Embedded Systems

Department of Informatics

Technische Universität München

www6.in.tum.de

23 January 2014

Define: Anomaly

 Dictionary:
– a deviation from the common rule, type, arrangement, or form.

– Synonyms: abnormality, exception, peculiarity, irregularity.

Anomaly: Counter intuitive behavior

Timing anomaly: Counter intuitive timing behavior
 The term was first coined by Lundqvist & Stenström [1].

 Analysis and Modeling: [1], [2], [3], [4], [12], [13], [14], [15], [16].

 Real-life examples are missing

2

Motivation

 Multi-cores everywhere:
– Demanding real-time applications.

– Only multi-cores will be produced in future !

 Interference on shared resources, e.g. shared memory is the
biggest challenge for the WCET analysis of applications
executing on multi-core architectures. The interference
analysis must be done carefully.

3

Motivation

 Interference:
– Occurs deep inside chip and is invisible outside.

– Depends on applications executing on co-existing cores.

– Why not measure execution time of application-under-test in the
presence of aggressive co-existing applications and consider the
maximum execution time as WCET? [18], [19], [20]

 Contribution: Identified two new timing anomalies:
– Occurs due to the interference on shared resources.

– Real-life examples using MälardalenWcet benchmark suit and NIOS II
quad-core processor on Altera FPGA.

4

Agenda

 Related work

 Background

 Theory behind the anomalies

 Real-life examples

 Conclusion

5

Related work

 Interference analysis:

– Cognizant approach:

• Takes cognizance of the co-existing applications.

• Lv et al [7], Pellizonni et al [8]

– Isolation approach:

• Considers the worst possible interference

• Our previous work [9, 10, 11], Paolieri et al [12]

 Timing anomalies:
– [13] models timing anomalous processor

– [14] identifies a new timing anomaly

– [15, 16] analyzes WCET on timing anomalous multi-core architectures

6

Background: Round robin arbiter (Greedy TDMA)

 Application-under-test executes on m1 (core1).

 The arbiter continuously looks for an active master in the
clockwise direction.
– As soon as an active master is encountered, it is granted access to the

shared resource for SlotSize number of clock cycles.

 Work conserving.

7

Core N Core… Core 2

Round Robin Arbiter

Shared

Memory

Core 1

Background: Round robin arbiter

 Best case completion latency, BL = 1 x SS, m1 issues a request
when the arbiter pointer is at B.

 Worst case completion latency, WL = 4 x SS, m1 issues a
request when the arbiter pointer is at W and ALL other
masters utilize their slots. AL = (BL + WL)/2.

8

Core N Core… Core 2

Round Robin Arbiter

Shared

Memory

Core 1

Background: Computation trace

 Recorded trace is extracted using an ISS.

 Cache misses are denoted by ex events.

 cx is the time between issue of two consecutive cache misses.
– During cx, processor executes from caches and registers.

 Experienced latencies Lx ∈ [BL, WL].

9

Background: Computation trace

 Experienced latencies are removed in computation trace and
all cache miss events are shifted to the left in time.

 Each event is appended by WL and they are shifted to right in
time to consider the worst case interference.

10

Background: Computation trace

 The computation trace can be considered constant if we start
from the same cache, pipeline state and use the same input
data.

11

Background: Latencies under the round robin arbitration

 Using computation trace, different interference scenarios can
be assumed.

 The completion latency experienced by one event delays the
issue of the next event by the same amount.
– Considering single outstanding cache miss.

12

a - Interference

 Definition: Uninterrupted interference generated from a

number of co-existing masters.
– Any co-existing master either interferes uninterruptedly or it is inactive.

 Occurs many times during application execution.
– After reset, after new task is scheduled on co-existing core, memory

intensive co-existing applications, e.g. camera, radar etc.

13

Latency under a - Interference

14

The arbiter pointer rotation becomes deterministic.

Latency under a - Interference

15

Latency under a - Interference

16

 For an individual (ith) access:

 Considering average value of all accesses along the
execution path:

 is an important parameter in determining the
average experienced latency by an application execution
path under a interference.

Timing anomaly - 1

 The round robin wheel is divided in,
– Favorable region: LX < AL.

– Unfavorable region: LX > AL.

17

Timing anomaly - 1

 Application which does majority of accesses in the favorable
region, benefits from the uninterrupted interference and the
experienced average latency is less than the theoretical
average-case latency (AL).

18

Timing anomaly - 2

 For some applications, uninterrupted interference from less
number of masters produce longer latencies than more
number of masters.

19

Test setup

 Goal:
– Explore real-life examples of the anomalies.

 Altera Quad-core NIOS processor.
– 32 Bytes cache line-size.

 Mälardalen WCET benchmark suit.

 Trace capture using Altera cycle accurate simulators.

20

Core 4 Core 3 Core 2

Round Robin Arbiter (Avalon interconnect)

Shared

Memory

Core 1

r,T1, L1

w,T2,L2

w,T3,L3

Test 1

 Altera Quad-core NIOS processor.
– 32 B cache line-size, I$ & D$ size = 512 B.

– ACET and WCET are achieved by appending cache miss events by the
theoretical average-case latency AL and the theoretical worst case
latency WL, respectively.

 21

Execution times in clock cycles. a = 3. OET = Observed
Execution Time, ACET = Average Case Execution Time

These two applications
experienced less than
average case execution
time under a = 3

interference

Test 2

 Core configuration
– 32 B cache line-size, I$ & D$ size = 1024 B.

 Starting from a quad-core system (a = 3), we kept on
increasing number of cores to 8 (a = 7).

22

OET in clock cycles

The cover application
experienced more latencies
under a = 4 interference than
a = 5 interference.

Discussion

 Round robin arbiter is popular and default arbiter of the many
off-the-shelf architectures, e.g. Altera, LEON etc.

 The first timing anomaly is also observed under advanced
budget based arbiters, e.g. CCSP [11], PBS [9].
– Budgeted number of transfers per unit time.

– Conflict resolution by priorities.

 Both the timing anomalies are absent under TDMA and
Priority Division [21] arbiters.

23

m2 m4 m3 m2 m4 m3

Replenishment period
Budget [m1,m2,m3,m4] = [2,2,2,2]
Priority [m1,m2,m3,m4] = [4,1,2,3]

m2, m3, m4 ineligible

m1

Conclusion

 Identified two new timing anomalies which occur due to
shared resource interference in multi-core architectures.
– Some applications benefit from aggressive co-existing applications and

experience even less than the average-case latencies.

– Some applications experience more latencies in the presence of less
number of aggressive interfering applications than in the presence of
more number of aggressive interfering applications.

 The real-life examples of the presence of the timing anomalies
are presented using Mälardalen WCET benchmark suit and
multi-core processor implemented on an Altera FPGA.

24

Thank you for your attention
Questions ?

