
1

A Unified Online Directed Acyclic Graph
Flow Manager for Multicore Schedulers

Karim Kanoun (EPFL), David Atienza (EPFL),
Nicholas Mastronarde (UB) and Mihaela van der Schaar (UCLA)

ASP-DAC 2014

Karim.Kanoun@epfl.ch
Embedded Systems Laboratory

EPFL, Switzerland

Outline	

§  Motivation

§  Problem statement

§  Proposed solution: Online DAG Flow Manager

§  Experimental setup and results

§  Conclusion

2

Modeling a task-graph application
with a general DAG model

6

7 12

4

5

11

8 9

10

13 14

16

1

2 3

15

di+2 di di+1

Time

3

General Directed Acyclic Graph (DAG) model

Dependency inside a
deadline tasks set

Dependency between
2 deadlines tasks set

From the application layer to the hardware layer

4

6

7 12

4

5

11

8 9

10

13 14

16

1

2 3

15

di+2 di di+1

Time

General Directed Acyclic Graph (DAG) model

Process and analyze
the DAG of an

application

Schedulers:

- Mapping tasks to cores
- Frequency selection
- Switching on/off cores

Multi-core platform

§  Static solutions
•  Unsuitable for applications with non-deterministic workload
•  Not applicable when the DAG model is determined at run-time

§  Online solutions
•  Designed for their own specific schedulers (most of the time)
•  Limitation on the DAG model

Limitation of existing DAG analysis solutions

5

di+2 di di+1

Time

Dependent deadlines
(only fork join)

di+2 di di+1

Time

Independent deadlines

di+2 di di+1

Time
? Core 1

Core 2

Time

Slack de

Problem statement

§  Unified DAG analysis solution to assist schedulers:

•  Online, low-complexity and scheduler-independent
•  Process all possible applications (general DAG)
•  Provide detailed tasks dependencies to schedulers

6

Any external scheduler

General DAG model
6

7 12

4

5

11

8 9

10

13 14

16

1

2 3

15

di+2 di di+1

Time

DAG Flow Manager (DFM)
Input and key point

§  Using a look-ahead window buffer to process the full DAG
§  Dependencies in red color are managed with a separated list

T0 T1 T2
Buffer

d0 d1 d2 d3

Time

d4
T0 T1 T2 T3 T4

T3 T1 T2
Buffer

T3 T4 T2
Buffer

T3 T4 T5
Buffer

T6 T4 T5
Buffer

7

§  DFM Input (for each Ti)
•  Adjacency matrix
•  Deadline value
•  List of edges connecting Ti with Ti+l (with l≠0)

DAG Flow Manager (DFM): Overview

yes

Re
qu

es
t

th
e

ne
xt

 T
i

no

5

Ti

Initialization (Ti)

- DAG decomposition
- Dependency checking
with other deadlines

Generate scheduler input

Multi-core platform

8

Scheduler

Pr
io

ri
ty

 T
ab

le

D
ea

dl
in

e
Sp

ec
 T

ab
le

Tf finished ?

Update (only Tf)

- DAG decomposition
- Dependencies checking
with other deadlines

Finished task
(with deadline df)

Application
de de+1

Te Te+1 Te+2

de+2

DFM
 Tasks sets decomposition

§  The decomposition is applied during the initialization and
the update phases
•  Example of an H.264 video decoder DAG decomposition

I P

B B

di di+1
di-1

F..

di+2

Time

P

B I..

li+2, 2 = 2

li+1, 3 = 3

li+1, 4 = 4

li+1, 5 = 5

li+1, 0 = 0

li+2, 1 =1

li+2, 2 = 2

li+2, 3 = 3

li+2, 4 = 4

li+2, 5 = 5

li+2, 0 = 0

li+1, 1 =1

Depth level

li, 1 =1

li, 2 = 2

li, 3 = 3

li, 4 = 4

li, 5 = 5

li, 0 = 0

li, j Group of tasks having the same deadline

Ti Ti+1 Ti+2

Tj 9

DFM
Managing dependencies between the deadlines

10

Ti
6

8

7

9

1 2

3

4

5

Ti+1

Buffer

14 15

10

11 12

13

Ti+2 Ti
6

8

7

9

1 2

3

4

5

Ti+1

Buffer

14 15

10

11 12

13

Ti+2

Initialization phase (Ti+2) Update phase

•  If task 3 finishes then edge [3-8] is
cleared normally.

•  If task 7 finishes then edge [7-10] is
stored in the list of non-cleared
dependencies.

•  Edge [7-10] is detected in the list
of non-cleared dependencies.
It is then cleared and removed from
the list

DFM
 Prepared scheduler input: Priority Table

§  Tasks in the Priority Table are sorted according to their:
•  (1) Deadline
•  (2) Depth level in Ti
•  (3) Estimated workload

 ...
…
tj

…
tn

- The total number of parent tasks that it still
depends on

- Workload

- Earliest release time

- Critical path workload to its deadline

 t1

Priority Table

Scheduler input for each task

allow detecting if a task
is ready to be scheduled

11

DFM
Prepared scheduler input: DeadlineSpec Table

§  Ti refers to the tasks set with deadline di

§  The DeadlineSpec Table is used to track the overall progress
of each tasks set Ti.

- Total workload

- Executed
workload

- Depth Table

- Scheduled
workload

- #outgoing edges

- #ingoing edges

Ti+1
Ti+2
…
…

 Ti

DeadlineSpec
Table

li,1
li,2
…
…

li,0
- Total workload

- Maximum number of
allowed cores

- Scheduled workload

- Minimum amount of
parallelizable workload

12

Experimental Setup

Existing DAG analysis
solution [Li et al, 2013]

DAG Flow Manager - DFM
(our solution)

DAG with dependent deadlines
- H.264 video decoder

- Synthetic DAG models

Online energy-efficient scheduler ([Wei et al, 2010] adapted)

13

[Benini, et al., 2005] L. Benini, et al., “Mparm: Exploring the multi-processor soc design space with systemc,” J. VLSI Signal
Process. Syst., vol. 41, no. 2, pp. 169–182, Sept. 2005.
[Cordeiro, et al., 2010] D. Cordeiro, et al., “Random graph generation for scheduling simulations,” in Proc. SIMUTools, 2010.
[Li, et al., 2013] J. Li, et al., “Analysis of Global EDF for Parallel Tasks,” in Proc. ECRTS, 2013.
[Wei, et al. 2010] Y.-H. Wei, et al., “Energy-efficient real-time scheduling of multimedia tasks on multi-core processors,” in Proc. ACM
SAC, 2010.

§  H.264 video decoder tasks workload measured with MPARM simulator
[Benini, et al, 2005] and using power figures of 90nm technology node

§  Synthetic DAGs generated with GGEN tool [Cordeiro, et al, 2010]

Existing DAG analysis solution

[Li, et al, 2013] DAG model

6

7

8 9

10

12

13 14

16

1

2 3

4

5 15

11 di+2 di di+1

Time

Fork-join DAG model

10

6

7

8 9

12

13 14

16

1

2 3

4

5 15

11 di+2 di di+1

Time

General DAG model

6

7 12

4

5

11

8 9

10

13 14

16

1

2 3

15

di+2 di di+1

Time

14

§  [Li et al, 2013] does not consider dependencies between
deadlines tasks sets
•  Forced to convert the general DAG model to the fork-join DAG model

and monitor then only one deadline at a time

Connecting an existing scheduler to our DFM
Scheduler overview

[Wei, et al. 2010] Y.-H. Wei, et al., “Energy-efficient real-time scheduling of multimedia tasks on multi-core processors,” in Proc.
ACM SAC, 2010.

§  Existing scheduler [Wei, et al. 2010] :
•  Tune the deadline
•  Largest Task First (LTF) on the tasks set with the earliest deadline de
•  Set up the minimum frequency based on the LTF and the tuned

deadline value

15

LTF de de+1 de+2

Independent
 tasks

Independent
tasks

Independent
tasks

tuning
LTF LTF

tuning tuning

Connecting an existing scheduler to our DFM
Adaptation to the general DAG model

§  Adapting [Wei, et al. 2010] to the general DAG model by
exploiting the output of our DFM

16

de de+1 de+2
tuning tuning tuning

le, 0 le, 1 le, 2 le+1, 0 le+1, 1 le+2, 0 le,+2 1 le+2, 2

Depth levels (DFM)

LTF LTF LTF LTF LTF LTF LTF LTF

Synchronization points
computed with LTF (+DFM)

§  Bonus: Thanks to our DFM, we can fill the generated gap
(filling the gaps with Te+l)	

Te (DFM) Te+1 (DFM)

Te+2 (DFM)

H.264 benchmarks
Energy consumption and deadline miss rates

n  Variation of the number of deadlines in the buffer and the number of cores

n  Up to 52% of energy reduction and over 80% reduction in deadline
miss rates

17 [Li, et al., 2013] J. Li, et al., “Analysis of Global EDF for Parallel Tasks,” in Proc. ECRTS, 2013.

Energy	 consump.on

600#

800#

1000#

1200#

1400#

1600#

1800#

6#cores# 8#cores# 10#cores#

En
er
gy
'c
on

su
m
p.

on
'(m

J)
'

(a)'

Our#solu0on#(DFM),#WS=2# #[Li,#et#al.,#2013]#,#WS=2#
Our#solu0on#(DFM),#WS=4# [Li,#et#al.,#2013]#],#WS=4#

Deadline	 miss	 rates

1%#

2%#

3%#

6%#

13%#

25%#

50%#

100%#

6#cores# 8#cores# 10#cores#

Fr
am

es
'm

is
s'r
at
es
'

(b)'

Our#solu2on#(DFM),#WS=2# #[Li,#et#al.,#2013]#,#WS=2#
Our#solu2on#(DFM),#WS=4# [Li,#et#al.,#2013]#],#WS=4#

18

Synthetic DAG benchmarks
Frequency usage and deadline miss rates

n  Deadlines values set 1% greater than the critical path workload (6 cores)
 à Simulate congested system
n  25 tasks per deadline; 40% workload variation; buffer size = 4 deadlines
n  Up to 42% of energy reduction (using ARM9 power figures)

[A] J. Li, et al., “Analysis of Global EDF for Parallel Tasks,” in Proc. ECRTS, 2013.

Frequency	 usage

0%

25%

50%

75%

100%

[A] DFM [A] DFM [A] DFM

TGFF Layers Erdos

W
or

kl
oa

d
%

(a)

f1=300MhZ f2=400MhZ f3=500MhZ

Deadline	 miss	 rates

45%

0%

63%

2% 0% 0%

[A] DFM [A] DFM [A] DFM

TGFF Layers Erdos
(b)

Deadline miss rates

Computation overhead analysis

H.264	 -‐	 20	 tasks	 per	 deadline

5"
10"
15"
20"
25"
30"
35"
40"
45"
50"

2" 4" 6"

µs
#

Number"of"deadlines"in"the"working"set"(a)"

DFM#(average#execu0on#0me#per#call)#

TGFF	 -‐	 4	 deadlines	 in	 the	 buffer

5"
10"
15"
20"
25"
30"
35"
40"
45"
50"

10" 20" 30" 40" 50"

µs
#

Number"of"tasks"per"deadline"(b)"

DFM#(average#execu0on#0me#per#call)#

n  Execution time measured on the iPhone 5
n  Our H.264 DAG model has 300 tasks per 1 second

à Our DFM with a buffer size of 4 deadlines needs only
650µs to proceed the 300 tasks (<<1% overhead)

19

Conclusion

n We have proposed a unified DAG analysis solution
•  Low complexity online solution

•  No restrictions were imposed, covering general DAG models

•  Providing detailed information about the execution status of
tasks and deadlines within a look-ahead window

n Significant reduction in energy consumption and deadline
miss rates
•  H.264 video decoder and Synthetic DAGs: up to 52% of

energy reduction and over 80% reduction in deadline miss rates

•  Computation overhead: 0.65% overhead (H.264 application)

20

QUESTIONS ?
Karim.Kanoun@epfl.ch

Embedded Systems Laboratory
EPFL, Switzerland

