A Unified Online Directed Acyclic Graph Flow Manager for Multicore Schedulers

Karim Kanoun (EPFL), David Atienza (EPFL), Nicholas Mastronarde (UB) and Mihaela van der Schaar (UCLA)

> <u>Karim.Kanoun@epfl.ch</u> Embedded Systems Laboratory EPFL, Switzerland

University at Buffalo *The State University of New York* UCLA

ASP-DAC 2014

Outline

- Motivation
- Problem statement
- Proposed solution: Online DAG Flow Manager
- Experimental setup and results
- Conclusion

Modeling a task-graph application with a general DAG model

General Directed Acyclic Graph (DAG) model

Dependency inside a

deadline tasks set

Dependency between 2 deadlines tasks set

From the application layer to the hardware layer

Limitation of existing DAG analysis solutions

Static solutions

- Unsuitable for applications with non-deterministic workload
- Not applicable when the DAG model is determined at run-time

- Online solutions
 - Designed for their own specific schedulers (most of the time)
 - Limitation on the DAG model

Independent deadlines

Dependent deadlines (only fork join)

Problem statement

DAG Flow Manager (DFM) Input and key point

- Using a look-ahead window buffer to process the full DAG
- Dependencies in red color are managed with a separated list

- DFM Input (for each T_i)
 - Adjacency matrix
 - Deadline value
 - List of edges connecting T_i with T_{i+1} (with $I \neq 0$)

DAG Flow Manager (DFM): Overview

Tasks sets decomposition

- The decomposition is applied during the **initialization** and the update phases
 - Example of an H.264 video decoder DAG decomposition

Managing dependencies between the deadlines

Update phase

- If task 3 finishes then edge [3-8] is cleared normally.
- If task 7 finishes then edge [7-10] is stored in the list of non-cleared dependencies.

Initialization phase (T_{i+2})

 Edge [7-10] is detected in the list of non-cleared dependencies.
 It is then cleared and removed from the list

Prepared scheduler input: Priority Table

- Tasks in the Priority Table are sorted according to their:
 - (1) Deadline
 - (2) Depth level in T_i
 - (3) Estimated workload

Prepared scheduler input: DeadlineSpec Table

- T_i refers to the tasks set with deadline d_i
- The DeadlineSpec Table is used to track the overall progress of each tasks set T_i.

Experimental Setup

- H.264 video decoder tasks workload measured with MPARM simulator [Benini, et al, 2005] and using power figures of 90nm technology node
- Synthetic DAGs generated with GGEN tool [Cordeiro, et al, 2010]

[Benini, et al., 2005] L. Benini, et al., "Mparm: Exploring the multi-processor soc design space with systemc," J. VLSI Signal Process. Syst., vol. 41, no. 2, pp. 169–182, Sept. 2005. [Cordeiro, et al., 2010] D. Cordeiro, et al., "Random graph generation for scheduling simulations," in Proc. SIMUTools, 2010. [Li, et al., 2013] J. Li, et al., "Analysis of Global EDF for Parallel Tasks," in Proc. ECRTS, 2013. [Wei, et al. 2010] Y.-H. Wei, et al., "Energy-efficient real-time scheduling of multimedia tasks on multi-core processors," in Proc. ACM SAC, 2010.

Existing DAG analysis solution

- [Li et al, 2013] does not consider dependencies between deadlines tasks sets
 - Forced to convert the general DAG model to the fork-join DAG model and monitor then only one deadline at a time

[Li, et al, 2013] DAG model

General DAG model

Connecting an existing scheduler to our DFM Scheduler overview

- Existing scheduler [Wei, et al. 2010] :
 - Tune the deadline
 - Largest Task First (LTF) on the tasks set with the earliest deadline d_e
 - Set up the minimum frequency based on the LTF and the tuned deadline value

[Wei, et al. 2010] Y.-H. Wei, et al., "Energy-efficient real-time scheduling of multimedia tasks on multi-core processors," in Proc. ¹⁵ ACM SAC, 2010.

Connecting an existing scheduler to our DFM Adaptation to the general DAG model

 Adapting [Wei, et al. 2010] to the general DAG model by exploiting the output of our DFM

Bonus: Thanks to our DFM, we can fill the generated gap (filling the gaps with T_{e+l})

H.264 benchmarks Energy consumption and deadline miss rates

- Variation of the number of deadlines in the buffer and the number of cores
- Up to 52% of energy reduction and over 80% reduction in deadline miss rates

[[]Li, et al., 2013] J. Li, et al., "Analysis of Global EDF for Parallel Tasks," in Proc. ECRTS, 2013.

Synthetic DAG benchmarks Frequency usage and deadline miss rates

Deadlines values set 1% greater than the critical path workload (6 cores)
Simulate congested system

- 25 tasks per deadline; 40% workload variation; buffer size = 4 deadlines
- Up to 42% of energy reduction (using ARM9 power figures)

[[]A] J. Li, et al., "Analysis of Global EDF for Parallel Tasks," in Proc. ECRTS, 2013.

Computation overhead analysis

- Execution time measured on the iPhone 5
- Our H.264 DAG model has 300 tasks per 1 second
- → Our DFM with a buffer size of 4 deadlines needs only 650µs to proceed the 300 tasks (<<1% overhead)</p>

LLLOSGEE 865014V

ÉA6

Conclusion

We have proposed a unified DAG analysis solution

- Low complexity online solution
- No restrictions were imposed, covering general DAG models
- Providing detailed information about the execution status of tasks and deadlines within a look-ahead window
- Significant reduction in energy consumption and deadline miss rates
 - H.264 video decoder and Synthetic DAGs: up to 52% of energy reduction and over 80% reduction in deadline miss rates
 - Computation overhead: 0.65% overhead (H.264 application)

