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Modeling a task-graph application  
with a general DAG model 
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General Directed Acyclic Graph (DAG) model 

Dependency inside a 
deadline tasks set 

Dependency between 
2 deadlines tasks set 



From the application layer to the hardware layer 
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application 

 
Schedulers: 

- Mapping tasks to cores 
- Frequency selection  
- Switching on/off cores 

 

Multi-core platform 



§  Static solutions 
•  Unsuitable for applications with non-deterministic workload 
•  Not applicable when the DAG model is determined at run-time 

 
 
 

§  Online solutions 
•  Designed for their own specific schedulers (most of the time) 
•  Limitation on the DAG model 

 
 

Limitation of existing DAG analysis solutions 
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Problem statement 

§  Unified DAG analysis solution to assist schedulers: 
 

•  Online, low-complexity and scheduler-independent 
•  Process all possible applications (general DAG) 
•  Provide detailed tasks dependencies to schedulers 
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Any external scheduler 

General DAG model 
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DAG Flow Manager (DFM) 
Input and key point 

§  Using a look-ahead window buffer to process the full DAG 
§  Dependencies in red color are managed with a separated list 
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§  DFM Input (for each Ti) 
•  Adjacency matrix 
•  Deadline value 
•  List of edges connecting Ti with Ti+l (with l≠0)  



DAG Flow Manager (DFM): Overview 
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Ti 

Initialization (Ti) 
 

- DAG decomposition  
- Dependency checking 
with other deadlines 

Generate scheduler input 

Multi-core platform 
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Tf finished ? 

Update (only Tf) 
 

- DAG decomposition 
- Dependencies checking 
with other deadlines   

Finished task 
(with deadline df) 

Application 
de de+1 

Te Te+1 Te+2 

de+2 



DFM 
 Tasks sets decomposition 

§  The decomposition is applied during the initialization and 
the update phases 
•  Example of an H.264 video decoder DAG decomposition 
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DFM  
Managing dependencies between the deadlines 
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•  If task 3 finishes then edge [3-8] is 
cleared normally. 

 

•  If task 7 finishes then edge [7-10] is 
stored in the list of non-cleared 
dependencies.  

•  Edge [7-10] is detected in the list 
of non-cleared dependencies. 
It is then cleared and removed from 
the list  



DFM 
 Prepared scheduler input: Priority Table 

§  Tasks in the Priority Table are sorted according to their: 
•  (1) Deadline 
•  (2) Depth level in Ti   
•  (3) Estimated workload 

 ... 
… 
tj 

… 
tn 

- The total number of parent tasks that it still 
depends on  

- Workload 

- Earliest release time 

- Critical path workload to its deadline 

 t1 

Priority Table 

Scheduler input for each task 

allow detecting if a task 
is ready to be scheduled 
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DFM 
Prepared scheduler input: DeadlineSpec Table 

§  Ti refers to the tasks set with deadline di 

§  The DeadlineSpec Table is used to track the overall progress 
of each tasks set Ti. 

- Total workload 

- Executed 
workload 

- Depth Table 

- Scheduled 
workload 

- #outgoing edges 

- #ingoing edges 
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allowed cores 
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- Minimum amount of 
parallelizable workload  
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Experimental Setup 

Existing DAG analysis 
solution [Li et al, 2013] 

DAG Flow Manager - DFM 
(our solution) 

DAG with dependent deadlines 
- H.264 video decoder  

- Synthetic DAG models   

Online energy-efficient scheduler ([Wei et al, 2010] adapted) 
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[Benini, et al., 2005] L. Benini, et al., “Mparm: Exploring the multi-processor soc design space with systemc,” J. VLSI Signal 
Process. Syst., vol. 41, no. 2, pp. 169–182, Sept. 2005. 
[Cordeiro, et al., 2010] D. Cordeiro, et al., “Random graph generation for scheduling simulations,” in Proc. SIMUTools, 2010. 
[Li, et al., 2013] J. Li, et al., “Analysis of Global EDF for Parallel Tasks,” in Proc. ECRTS, 2013. 
[Wei, et al. 2010] Y.-H. Wei, et al., “Energy-efficient real-time scheduling of multimedia tasks on multi-core processors,” in Proc. ACM 
SAC, 2010. 

§  H.264 video decoder tasks workload measured with MPARM simulator 
[Benini, et al, 2005] and using power figures of 90nm technology node 

§  Synthetic DAGs generated with GGEN tool [Cordeiro, et al, 2010] 



Existing DAG analysis solution 

[Li, et al, 2013]  DAG model 
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§  [Li et al, 2013] does not consider dependencies between 
deadlines tasks sets 
•   Forced to convert the general DAG model to the fork-join DAG model 

and monitor then only one deadline at a time 



Connecting an existing scheduler to our DFM 
Scheduler overview 

[Wei, et al. 2010] Y.-H. Wei, et al., “Energy-efficient real-time scheduling of multimedia tasks on multi-core processors,” in Proc. 
ACM SAC, 2010. 

§  Existing scheduler [Wei, et al. 2010] : 
•  Tune the deadline  
•  Largest Task First (LTF) on the tasks set with the earliest deadline de 
•  Set up the minimum frequency based on the LTF and the tuned 

deadline value   
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Connecting an existing scheduler to our DFM 
Adaptation to the general DAG model 

§  Adapting [Wei, et al. 2010] to the general DAG model by 
exploiting the output of our DFM 
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de de+1 de+2 
tuning tuning tuning 

le, 0 le, 1 le, 2 le+1, 0 le+1, 1 le+2, 0 le,+2 1 le+2, 2

Depth levels (DFM) 

LTF LTF LTF LTF LTF LTF LTF LTF 

Synchronization points 
computed with LTF (+DFM) 

§  Bonus: Thanks to our DFM, we can fill the generated gap  
(filling the gaps with Te+l)	

Te (DFM) Te+1 (DFM) 
 

Te+2 (DFM) 



H.264 benchmarks 
Energy consumption and deadline miss rates 

n  Variation of the number of deadlines in the buffer and the number of cores 

n  Up to 52% of energy reduction and over 80% reduction in deadline 
miss rates  

 

17 [Li, et al., 2013] J. Li, et al., “Analysis of Global EDF for Parallel Tasks,” in Proc. ECRTS, 2013. 
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Synthetic DAG benchmarks 
Frequency usage and deadline miss rates 

n  Deadlines values set 1% greater than the critical path workload (6 cores)  
     à Simulate congested system 
n  25 tasks per deadline; 40% workload variation; buffer size = 4 deadlines 
n  Up to 42% of energy reduction (using ARM9 power figures) 
 

[A] J. Li, et al., “Analysis of Global EDF for Parallel Tasks,” in Proc. ECRTS, 2013. 
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Computation overhead analysis 

H.264	  -‐	  20	  tasks	  per	  deadline 

5"
10"
15"
20"
25"
30"
35"
40"
45"
50"

2" 4" 6"

µs
#

Number"of"deadlines"in"the"working"set"(a)"

DFM#(average#execu0on#0me#per#call)#

TGFF	  -‐	  4	  deadlines	  in	  the	  buffer 

5"
10"
15"
20"
25"
30"
35"
40"
45"
50"

10" 20" 30" 40" 50"

µs
#

Number"of"tasks"per"deadline"(b)"

DFM#(average#execu0on#0me#per#call)#

n  Execution time measured on the iPhone 5 
n  Our H.264 DAG model has 300 tasks per 1 second  

à Our DFM with a buffer size of 4 deadlines needs only 
650µs to proceed the 300 tasks (<<1% overhead) 
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Conclusion 

n We have proposed a unified DAG analysis solution 
•  Low complexity online solution 

•  No restrictions were imposed, covering general DAG models 

•  Providing detailed information about the execution status of 
tasks and deadlines within a look-ahead window 

n Significant reduction in energy consumption and deadline 
miss rates 
•  H.264 video decoder and Synthetic DAGs: up to 52% of 

energy reduction and over 80% reduction in deadline miss rates  

•  Computation overhead: 0.65% overhead (H.264 application) 
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