Automated Debugging of
Missing Assumptions

O

BRIAN KENG!, EVEAN QIN2,
ANDREAS VENERIS!?,

BAO LE*

vennsa

technologies

2VENNSA
IUNIVERSITY OF TORONTO TECHNOLOGIES INC.

Outline

O

e Motivation

e Background

» Debugging Missing Assumptions
o Using a Single Counter-example
o Using Multiple Counter-examples

» Experimental Results

e Conclusion

Outline

O

e Motivation

e Background

» Debugging Missing Assumptions
o Using a Single Counter-example
o Using Multiple Counter-examples

» Experimental Results

e Conclusion

Motivation

O

» Formal Property Checkers

o Exhaustively verify an assertion which encodes the design
intent

= Returns counter-example that excites failure in the
design

= Can locate hard-to-find corner case failures
* Debugging formal counter-examples can be
challenging, as observed failures can be due to:
o A design bug
o An incorrectly written assertion
o Or a missing assumption

Motivation
Formal Verification """
State Space Simulation
Coverage
False Bug
, Real Bu
Invalid States 5

Motivation

O

» Causes of Missing Assumptions
o The design specification

o Undocumented assertions
o Functionality of adjacent design blocks

» The engineer needs to find the missing assumptions
in order to prune the returned counter-example list

» This will expose counter-examples encoding “real”
design bugs

Outline

O

e Motivation

e Background

» Debugging Missing Assumptions
o Using a Single Counter-example
o Using Multiple Counter-examples

» Experimental Results

e Conclusion

MUS and MCS

O

» Given a UNSAT Boolean formula ® in CNF:
o UNSAT Cores:
= Subset of clauses in @ that are UNSAT
o Minimal Unsatisfiable Subset (MUS)
« UNSAT core where every proper subset is SAT
o Minimal Correct Set (MCS)

=~ Minimal subset of clauses in @ such that removing
these clauses will make ® SAT

UNSAT Core Example

@ — —
(a) A (D) A (avDb)

A UNSAT !tiore and I\/IUS

MCSs

MUIS and MCIS

O

e Minimal Unsatisfiable Input Subset (MUIS)

o A minimal unsatisfiable set of input unit clauses that
result in ® being UNSAT

e Minimal Correction Input Set (MCIS)

o A minimal set of input unit clauses that when removed,
will result in ® being SAT

 MUIS (MCIS) are analogous to MUS (MCS)

MUIS and MCIS Example

O

(a) N (b) A(C) | Input Clauses

Aavd)Aa(bvd)a(avbyvd) Teropersy

AlevIEYAdv F)Aa(cvdy f)A(f)

Transition Clauses

MCIS

a_

b_

D5

=hy

C

Outline

O

e Motivation

e Background

e Debugging Missing Assumptions
o Using a Single Counter-example
o Using Multiple Counter-examples

» Experimental Results

e Conclusion

Debugging Missing Assumptions

@,
e Idea:

o Give the engineer suggestions for the missing
assumptions

o Extract all MUIS, U}, from the design CNF to build a
filtering function F = U° ... Uk

e Glven an input constraint A:

o If F « A is SAT, the failure seen in the counter-example is
not prevented

o If F « A 1s UNSAT, then A will ensure that future failures
will not occur in the same way as the given counter-
example.

e MUISs can be computed in terms of MCISs
.

Debugging Missing Assumptions

O

Assertion Design Counter-example

A

y

Extract MUIS

Filtering Function ‘ Constraints

y \ 4

Filter Candidate Assumption
Constraints Model

v
Filtered

Constraints

A

» B. Keng and A. Veneris, “Automated debugging of missing input constraints
in a formal verification environment,” in Formal Methods in CAD, 2012.

Outline

O

e Motivation

e Background

e Debugging Missing Assumptions
o Using a Single Counter-example
o Using Multiple Counter-examples

» Experimental Results

e Conclusion

Using Multiple Counterexamples: Overall Flow
» Generate multiple >
. . | Property
distinct counter S, Checker
examples using formal Multiple | Counter-example
tool Counter- Extract
G to N examples MCISs
» Generate inpu
;1P — I mais
assumptions that can c .
. . | Generate | | Assumption
prevent failures seen in Generate | |Assumptions Model
the counter-examples ~ Assumptions Candidates |
e More counter examples B Filter
id 1 Assumptions Pruned
can al .genera | Assumptions
debugging Filtered
Assumptions

Generating Multiple Counter-examples

O

e It is difficult to generate a ‘useful’ second counter-
example

o The assertion should fail in a different manner

o Therefore, distinct counter-examples must be found

e Two counter-examples, R and S, are distinct given
their set of MUSs, My and Mg, such that:

Generating Multiple Counter-examples

O

» To generate distinct counter-examples, we must
prevent previously seen MUSs from occurring again

o The MUS can be prevented if at least one of its clauses is
not present

o Functionality of the design must not be changed
o Only input clauses can be modified to retain functionality

Generating Multiple Counter-examples

O

» As a result, previously found MUISs can be blocked.

» Using the duality between MUISs and MCISs, the
blocking constraint can be computed from a single
MCIS.

kK _ k Ak k
B" =c, AC, /\"'/\C\ck\

B=B'A---AB"

A Practical Algorithm

Generate
Multiple
Counter-
examples

Generate
Assumptions

Property
Checker

A

Extract

Counter-example

Generate

Assumption

Assumptions |

Model

Filter

|Candidates

A

Assumptions

Filtered
Assumptions

Pruned
Assumptions

No

Run Formal
Tool

Extract All
MCIS

CIS set |=
&& max Cex

No More Cex

ot reache

Extract
Blocking

Run Formal
Tool

Returned?

Add blocking
constraint.
Keep Cex

Extract all
MCIS

Outline

O

e Motivation

e Background

» Debugging Missing Assumptions
o Using a Single Counter-example
o Using Multiple Counter-examples

e Experimental Results

e Conclusion

Experimental Results

cpu 10 255 100 5 31 3
ddr2 9 383 1395 1504 4094 333
hpdmc 10 70 60 4 90 33
mips 4 278 93 9 59 22
mrisc 8 88 1126 5 39 10
pci 8 611 761 7 25 10

ABN L .ﬂiﬁﬂnpuJ[S
sfififlswadhfzgation

AY))\ ALY CIYAY
v \Ws DL,
L4 o ° 4 ° @
A TY" D R '.-“)@ L "1, D R Xi A) AN\
[LIBRT y EANCR-A N1 L \ L 134N

Experimental Results

@
Form | Total Cand. | Filt Using n CE

Time | Assumptions
Z |2 |z |2

cpu 15 653 356 154

ddr2 3 625 86 226 68 - - -
hpdme 15 112 148 97 17 16 11 11
mips 4 278 93 163 36 - - -

mrisc 8 88 1126 92 1 5 - -

Outline

O

e Motivation

e Background

» Debugging Missing Assumptions
o Using a Single Counter-example
o Using Multiple Counter-examples

» Experimental Results

e Conclusion

Conclusion

O

» Debugging missing assumptions
o Generate multiple formal counter-examples for the
failure

o Generate a function that encodes the input combinations
that caused the assertion to fail

o Use the function to generate a list of fixed cycle
assumptions that prevent the failures

» These can be used as hints for the actual missing
assumption

