
BRIAN KENG 1, EVEAN QIN 2,
ANDREAS VENERIS 1,

BAO LE 1

Automated Debugging of
Missing Assumptions

1UNIVERSITY OF TORONTO

2VENNSA
TECHNOLOGIES INC.

Outline

 Motivation

 Background

 Debugging Missing Assumptions

 Using a Single Counter-example

 Using Multiple Counter-examples

 Experimental Results

 Conclusion

Outline

 Motivation

 Background

 Debugging Missing Assumptions

 Using a Single Counter-example

 Using Multiple Counter-examples

 Experimental Results

 Conclusion

Motivation

 Formal Property Checkers
 Exhaustively verify an assertion which encodes the design

intent

Returns counter-example that excites failure in the
design

Can locate hard-to-find corner case failures

 Debugging formal counter-examples can be
challenging, as observed failures can be due to:
 A design bug

 An incorrectly written assertion

 Or a missing assumption

Motivation

False Bug

Real Bug
Invalid States

Simulation
 Coverage

Formal Verification
State Space

Motivation

 Causes of Missing Assumptions

 The design specification

 Undocumented assertions

 Functionality of adjacent design blocks

 The engineer needs to find the missing assumptions
in order to prune the returned counter-example list

 This will expose counter-examples encoding “real”
design bugs

Outline

 Motivation

 Background

 Debugging Missing Assumptions

 Using a Single Counter-example

 Using Multiple Counter-examples

 Experimental Results

 Conclusion

MUS and MCS

 Given a UNSAT Boolean formula Φ in CNF:

 UNSAT Cores:

Subset of clauses in Φ that are UNSAT

 Minimal Unsatisfiable Subset (MUS)

UNSAT core where every proper subset is SAT

 Minimal Correct Set (MCS)

Minimal subset of clauses in Φ such that removing
these clauses will make Φ SAT

UNSAT Core Example

UNSAT Core and MUS

MCSs

)()()(baba 

MUIS and MCIS

 Minimal Unsatisfiable Input Subset (MUIS)

 A minimal unsatisfiable set of input unit clauses that
result in Φ being UNSAT

 Minimal Correction Input Set (MCIS)

 A minimal set of input unit clauses that when removed,
will result in Φ being SAT

 MUIS (MCIS) are analogous to MUS (MCS)

MUIS and MCIS Example

 MUIS

Transition Clauses

Input Clauses

)()()()(

)()()(

)()()(

ffdcfdfc

dbadbda

cba







a
b

c

d
f

 Property

 MCIS

Outline

 Motivation

 Background

 Debugging Missing Assumptions

 Using a Single Counter-example

 Using Multiple Counter-examples

 Experimental Results

 Conclusion

Debugging Missing Assumptions

 Idea:
 Give the engineer suggestions for the missing

assumptions

 Extract all MUIS , Ui, from the design CNF to build a
filtering function F = U0 … Uk

 Given an input constraint A:
 If F • A is SAT, the failure seen in the counter-example is

not prevented

 If F • A is UNSAT, then A will ensure that future failures
will not occur in the same way as the given counter-
example.

 MUISs can be computed in terms of MCISs

Extract MUIS

DesignAssertion

Filter Candidate
Constraints

Assumption
Model

Filtering Function

Counter-example

Filtered
Constraints

Constraints

 B. Keng and A. Veneris, “Automated debugging of missing input constraints
in a formal verification environment,” in Formal Methods in CAD, 2012.

Debugging Missing Assumptions

Outline

 Motivation

 Background

 Debugging Missing Assumptions

 Using a Single Counter-example

 Using Multiple Counter-examples

 Experimental Results

 Conclusion

Using Multiple Counterexamples: Overall Flow

Filtered
Assumptions

Generate
Assumptions

Filter
Assumptions

Assumption
Model

Property
Checker

Extract
MCISs

Pruned
Assumptions

Candidates

Generate
Assumptions

Generate
Multiple
Counter-
examples

Counter-example

MCIS

 Generate multiple
distinct counter
examples using formal
tool

 Generate input
assumptions that can
prevent failures seen in
the counter-examples

 More counter examples
can aid general
debugging

Generating Multiple Counter-examples

 It is difficult to generate a ‘useful’ second counter-
example

 The assertion should fail in a different manner

 Therefore, distinct counter-examples must be found

 Two counter-examples, R and S, are distinct given
their set of MUSs, MR and MS, such that:

MR ∩ MS = ∅

Generating Multiple Counter-examples

 To generate distinct counter-examples, we must
prevent previously seen MUSs from occurring again

 The MUS can be prevented if at least one of its clauses is
not present

 Functionality of the design must not be changed

 Only input clauses can be modified to retain functionality

Generating Multiple Counter-examples

k

C

kkk
kcccB  ...10

 As a result, previously found MUISs can be blocked.

 Using the duality between MUISs and MCISs, the
blocking constraint can be computed from a single
MCIS.

kBBB  1

A Practical Algorithm

Run Formal
Tool

Extract All
MCIS

Extract
Blocking

Run Formal
Tool

More Cex
Returned?

Add blocking
constraint.
Keep Cex

Extract all
MCIS

MCIS set != 0
&& max Cex
not reached

No

Yes Yes

No

Filtered
Assumptions

Generate
Assumptions

Filter
Assumptions

Assumption
Model

Property
Checker

Extract
MCISs

Pruned
Assumptions

Candidates

Generate
Assumptions

Generate
Multiple
Counter-
examples

Counter-example

MCIS

Outline

 Motivation

 Background

 Debugging Missing Assumptions

 Using a Single Counter-example

 Using Multiple Counter-examples

 Experimental Results

 Conclusion

Experimental Results

 Six designs from OpenCores used for evaluation,
with assertions written based upon the specification
documents.

Crt
Name

CE

MCIS
Time

(s)

Formal
Time

(s)

Gen
Time

(s)

Total
Candidate
Assumpt

Filter
Cand.

Assumpt

cpu 10 255 100 5 31 3

ddr2 9 383 1395 1504 4094 333

hpdmc 10 70 60 4 90 33

mips 4 278 93 9 59 22

mrisc 8 88 1126 5 39 10

pci 8 611 761 7 25 10

 In the case of ddr2, the excessive number of inputs
cause the run-time and number of filtered
candidates to be large.

 The absolute number of filtered assumptions
returned to the user is relatively small with an
average of 28.

Experimental Results

 5, 10, or 15 counter-examples reduce the number of
filtered assumptions by 30.4%, 37.9% and 38.3%,
respectively (averages for all experiments in paper)

Crt
Name

CE

MCIS
Time

(s)

Form
Time

(s)

Total Cand.
Assumptions

Filt Using n CE

1 5 10 15

cpu 15 653 356 154 2 2 2 2

ddr2 3 625 86 226 68 - - -

hpdmc 15 112 148 97 17 16 11 11

mips 4 278 93 163 36 - - -

mrisc 8 88 1126 92 11 5 - -

pci 8 611 761 267 9 9 - -

 The ideal behavior is where the second counter-
example does indeed find a different way to excite
the design and cause the assertion to fail.

 In another case, a counter-example is found similar
to the original one but shifted in time.

Outline

 Motivation

 Background

 Debugging Missing Assumptions

 Using a Single Counter-example

 Using Multiple Counter-examples

 Experimental Results

 Conclusion

Conclusion

 Debugging missing assumptions

 Generate multiple formal counter-examples for the
failure

 Generate a function that encodes the input combinations
that caused the assertion to fail

 Use the function to generate a list of fixed cycle
assumptions that prevent the failures

 These can be used as hints for the actual missing
assumption

