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Motivation 

 Formal Property Checkers 
 Exhaustively verify an assertion which encodes the design 

intent 

Returns counter-example that excites failure in the 
design 

Can locate hard-to-find corner case failures 

 Debugging formal counter-examples can be 
challenging, as observed failures can be due to: 
 A design bug 

 An incorrectly written assertion 

 Or a missing assumption 
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Motivation 

 Causes of Missing Assumptions 

 The design specification 

 Undocumented assertions 

  Functionality of adjacent design blocks 

 The engineer needs to find the missing assumptions 
in order to prune the returned counter-example list  

 This will expose counter-examples encoding “real” 
design bugs 
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MUS and MCS 

 Given a UNSAT Boolean formula Φ in CNF: 

 UNSAT Cores:  

Subset of clauses in Φ that are UNSAT 

 Minimal Unsatisfiable Subset (MUS) 

UNSAT core where every proper subset is SAT 

 Minimal Correct Set (MCS) 

Minimal subset of clauses in Φ such that removing 
these clauses will make Φ SAT 
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MUIS and MCIS 

 Minimal Unsatisfiable Input Subset (MUIS) 

 A minimal unsatisfiable set of input unit clauses that 
result in Φ being UNSAT 

 Minimal Correction Input Set (MCIS) 

 A minimal set of input unit clauses that when removed, 
will result in Φ being SAT 

 MUIS (MCIS) are analogous to MUS (MCS) 

 

 



MUIS and MCIS Example 
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Debugging Missing Assumptions 

 Idea: 
 Give the engineer suggestions for the missing 

assumptions 

 Extract all MUIS , Ui, from the design CNF to build a 
filtering function F = U0 … Uk 

 Given an input constraint A: 
 If F • A is SAT, the failure seen in the counter-example is 

not prevented 

 If F • A is UNSAT, then A will ensure that future failures 
will not occur in the same way as the given counter-
example. 

 MUISs can be computed in terms of MCISs 
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 B. Keng and A. Veneris, “Automated debugging of missing input constraints 
in a formal verification environment,” in Formal Methods in CAD, 2012. 
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Using Multiple Counterexamples: Overall Flow 
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 Generate multiple 
distinct counter 
examples using formal 
tool 

 Generate input 
assumptions that can 
prevent failures seen in 
the counter-examples 

 More counter examples 
can aid general 
debugging 

 



Generating Multiple Counter-examples 

 It is difficult to generate a ‘useful’ second counter-
example  

 The assertion should fail in a different manner 

 Therefore, distinct counter-examples must be found 

 Two counter-examples, R and S, are distinct given 
their set of MUSs, MR and MS, such that: 

MR ∩ MS = ∅  



Generating Multiple Counter-examples 

 To generate distinct counter-examples, we must 
prevent previously seen MUSs from occurring again 

 The MUS can be prevented if at least one of its clauses is 
not present 

 Functionality of the design must not be changed 

 Only input clauses can be modified to retain functionality 

 



Generating Multiple Counter-examples 
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 As a result, previously found MUISs can be blocked. 

 Using the duality between MUISs and MCISs, the 
blocking constraint can be computed from a single 
MCIS. 
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A Practical Algorithm 
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Experimental Results 

 Six designs from OpenCores used for evaluation, 
with assertions written based upon the specification 
documents. 

 

Crt 
Name 

# 
CE 

MCIS 
Time 

(s) 

Formal 
Time 

(s) 

Gen 
Time 

(s) 

Total 
Candidate 
Assumpt 

Filter 
Cand. 

Assumpt 

cpu 10 255 100 5 31 3 

ddr2 9 383 1395 1504 4094 333 

hpdmc 10 70 60 4 90 33 

mips 4 278 93 9 59 22 

mrisc 8 88 1126 5 39 10 

pci 8 611 761 7 25 10 

 In the case of ddr2, the excessive number of inputs 
cause the run-time and number of filtered 
candidates to be large. 

 

 

 The absolute number of filtered assumptions 
returned to the user is relatively small with an 
average of 28. 

 

 



Experimental Results 

 5, 10, or 15 counter-examples reduce the number of 
filtered assumptions by 30.4%, 37.9% and 38.3%, 
respectively (averages for all experiments in paper) 
 

Crt 
Name 

# 
CE 

MCIS 
Time 

(s) 

Form 
Time 

(s) 

Total Cand. 
Assumptions 

Filt Using n CE 

1 5 10 15 

cpu 15 653 356 154 2 2 2 2 

ddr2 3 625 86 226 68 - - - 

hpdmc 15 112 148 97 17 16 11 11 

mips 4 278 93 163 36 - - - 

mrisc 8 88 1126 92 11 5 - - 

pci 8 611 761 267 9 9 - - 

 

 

 The ideal behavior is where the second counter-
example does indeed find a different way to excite 
the design and cause the assertion to fail. 
 
 

 In another case, a counter-example is found similar 
to the original one but shifted in time. 
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Conclusion 

 Debugging missing assumptions 

 Generate multiple formal counter-examples for the 
failure 

 Generate a function that encodes the input combinations 
that caused the assertion to fail 

 Use the function to generate a list of fixed cycle 
assumptions that prevent the failures  

 These can be used as hints for the actual missing 
assumption 

 


