QF_BV Property Directed Reachability with Mixed Type Atomic Reasoning Units

Tobias Welp and Andreas Kuehlmann

Outline

1. Introduction

- 2. QF_BV Property Directed Reachability
- 3. Mixed Type Atomic Reasoning Units
- 4. Experimental Results
- 5. Summary

Motivation for Property Directed Reachability

- In 2011, Bradley proposed *Property Directed Reachability* (a.k.a IC³) for model checking [Brad11].
- Experiments indicate that PDR outperforms model checking based on *Interpolation* [McMi03] on representative benchmark sets.

[EénM11]

Other Favorable Properties of PDR

- On unrolling of transition relation.
- Parallizable.
- Allows for initialization with known invariants.
- Good for finding counterexamples and proving that none exists.

Research Pertaining PDR

Model Checking

- Given are
 - A set of initial states: $I(\mathbf{x})$
 - A set of bad states: $B(\mathbf{x})$
 - A transition relation: $T(\mathbf{x}, \mathbf{x}')$
- Question: Is a bad state reachable from an initial state using valid transitions?

Model Checking with PDR

• Can bad be reached within zero steps?

Legend: ■ Initial set I■ Bad set B■ Proof oblig.

Cover

Legend:

Initial set IBad set BProof oblig.

Cover

- No, only the initial set is reachable within zero steps.
- Everything else is *covered*, i.e. not reachable.

Legend:

■ Initial set I■ Bad set B■ Proof oblig.
■ Cover

- Can bad be reached within one step?
- Conservatively, we initially assume that everything is reachable.

Legend:
■ Initial set I■ Bad set B■ Proof oblig.
■ Cover

• Find a **point** in **bad** that is not yet covered.

Legend:
Initial set *I*Bad set *B*Proof oblig.
Cover

• Expand proof obligation using simulation.

• The cube cannot be reached from the reachable area in frame 0.

12

Legend:

■ Initial set I■ Bad set B■ Proof oblig.

Cover

• Hence, we can consider the **proof obligation** covered.

Legend:

■ Initial set I■ Bad set B■ Proof oblig.
■ Cover

• Expand the covered cube as much as possible.

Legend:

■ Initial set I■ Bad set B■ Proof oblig.
■ Cover

Repeat with finding a new point in bad that is not covered.

Legend:

■ Initial set I■ Bad set B■ Proof oblig.
■ Cover

- Again, the point cannot be reached from the reachable area in the previous frame.
- Expand the covered cube.
- Now, bad is completely covered.

Legend:
Initial set *I*Bad set *B*Proof oblig.
Cover

• Can bad be reached within two steps?

- - -

- Identified an inductive invariant disjoint from bad.
- This proves the property.

Outline

- 1. Introduction
- 2. QF_BV Property Directed Reachability
- 3. Mixed Type Atomic Reasoning Units
- 4. Experimental Results
- 5. Summary

Property Directed Reachability for QF_BV

	Original	
	Formulation	
Atomic Reasoning	Boolean	
Unit	Cubes	
Expansion of	Ternary	
Proof Obligations	Simulation	
Strengths		
Weaknesses		

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- Initial set I
- lacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \mod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \mod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

Property Directed Reachability for QF_BV

	Original	
	Formulation	
Atomic Reasoning	Boolean	
Unit	Cubes	
Expansion of	Ternary	
Proof Obligations	Simulation	
Strengths	logic	
Weaknesses	arithmetic	

Property Directed Reachability for QF_BV

	Original	Polytopes	
	Formulation	[Welp13]	
Atomic Reasoning	Boolean	Polytopes	
Unit	Cubes	rolylopes	
Expansion of	Ternary	Interval	
Proof Obligations	Simulation	Simulation	
Strengths	logic		
Weaknesses	arithmetic		

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- Initial set I
- lacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- lacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- lacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \mod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \mod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \mod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

Property Directed Reachability for QF_BV

	Original	Polytopes	
	Formulation	[Welp13]	
Atomic Reasoning	Boolean	Polytopes	
Unit	Cubes	Folytopes	
Expansion of	Ternary	Interval	
Proof Obligations	Simulation	Simulation	
Proof Obligations Strengths	Simulation	Simulation	

Outline

- 1. Introduction
- 2. QF_BV Property Directed Reachability
- 3. Mixed Type Atomic Reasoning Units
- 4. Experimental Results
- 5. Summary

Property Directed Reachability for QF_BV

	Original	Polytopes	Hybrid
	Formulation	[Welp13]	Пуына
Atomic Reasoning	Boolean	Polytopes	Boolean Cubes
Unit	Cubes	i diytopes	and Polytopes
Expansion of	Ternary	Interval	Hybrid
Proof Obligations	Simulation	Simulation	Simulation
Strengths	logic	arithmetic	
Weaknesses	arithmetic	logic	

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- lacksquare Bad set B
- Proof oblig.
- Cover

$$I := (2 \times y \equiv x) \land (x + y \le 3)$$

$$T := (y' \equiv y + 1) \land (x' \equiv x - 2) \land (y' > y) \land (x' < x)$$

$$B := (x + y \ge 4) \lor (x \bmod 2 \equiv 1)$$

- \blacksquare Initial set I
- \blacksquare Bad set B
- Proof oblig.
- Cover

 The favorable event can be expected to happen in a constant number of steps.

$$E\{\text{trials until Boolean cube specialization}\} = c\sum_{i=1}^{\infty}i(1-c)^{i-1} = \frac{1}{c}$$

Analogously, one calculates

$$E\{\text{trials until polytope specialization}\} = (1-c)\sum_{i=1}^{\infty}ic^{i-1} = \frac{1}{1-c}$$

Simulation-based expansion of proof obligations is e.g. used to expand a bad ARU that is not yet covered:

Simulation-based expansion of proof obligations is e.g. used to expand a bad ARU that is not yet covered:

The check whether or not an expansion is valid can be reduced to simulation on sets of points [EénM11].

Assume bad is defined as $e_1 < 2$ and we already covered $e_1 < -1$ with

$$e_1 := (x_1 - x_2 + 2) \land (y_1 \lor y_2)$$

Then we may expand an ARU to a larger ARU \hat{a} if $e:=(e_1<2) \land \neg (e_1<-1)$ evaluates to **true** for all values in \hat{a} .

$$e := \underbrace{(e_1 < 2)} \land \neg \underbrace{(e_1 < -$$

0 - - -

Let
$$\hat{a} := (1 \le x_1 \le 5) \land (0 \le x_2 \le 3) \land (y_1 \in -00-) \land (y_2 \in 100-)$$

 Φ Ternary Simulation

Let
$$\hat{a} := (1 \le x_1 \le 5) \land (0 \le x_2 \le 3) \land (y_1 \in -00-) \land (y_2 \in 100-)$$

Φ Ternary Simulation

Let
$$\hat{a} := (1 \le x_1 \le 5) \land (0 \le x_2 \le 3) \land (y_1 \in -00-) \land (y_2 \in 100-)$$

 Φ Ternary Simulation

Let
$$\hat{a} := (1 \le x_1 \le 5) \land (0 \le x_2 \le 3) \land (y_1 \in -00-) \land (y_2 \in 100-)$$

The check whether or not an expansion is valid can be reduced to simulation on sets of points [EénM11].

Assume bad is defined as $e_1 < 2$ and we already covered $e_1 < -1$ with

$$e_1 := (x_1 - x_2 + 2) \land (y_1 \lor y_2)$$

Then we may expand an ARU \hfill to a larger ARU \hat{a} if

$$e:=\underbrace{(e_1<2)}_{\text{bad}} \land \neg \underbrace{(e_1<-1)}_{\text{covered}}$$
 evaluates to **true** for all values in \hat{a} .

Interval Simulation

Let
$$\hat{a} := (1 \le x_1 \le 5) \land (0 \le x_2 \le 3) \land (y_1 \in -00-) \land (y_2 \in 100-)$$

Hybrid Simulation

Let
$$\hat{a} := (1 \le x_1 \le 5) \land (0 \le x_2 \le 3) \land (y_1 \in -00-) \land (y_2 \in 100-)$$

Property Directed Reachability for QF_BV

	Original	Polytopes	Hybrid
	Formulation	[Welp13]	Пурпа
Atomic Reasoning	Boolean	Polytopes	Boolean Cubes
Unit	Cubes	i diytopes	and Polytopes
Expansion of	Ternary	Interval	Hybrid
Proof Obligations	Cimulation	Simulation	Cimulatian
1 1001 Obligations	Simulation	Simulation	Simulation
			arithmetic
Strengths	logic	arithmetic	

Outline

- 1. Introduction
- 2. QF_BV Property Directed Reachability
- 3. Mixed Type Atomic Reasoning Units
- 4. Experimental Results
- 5. Summary

Experimental Setup

Benchmark Sets

Bitvector set of SV-Comp [Beye12]

InvGen-Benchmarks [Gupt09]

```
int
foo(int n)
{
  int x = 1;
  while(1)
  {
    x += 2*n;
    assert(x);
  }
}
```

Mostly Logic Invariants

```
int
foo(int n)
{
  int x = 0;
  assume(n>=0);
  while(x < n)
  {
    x--;
  }
  assert(x <= n);
}</pre>
```

Mostly Arithmetic Invariants

Overall Performance

Overall Performance

Impact of Simulation Type

Impact of Simulation Type

Comparison vs ABC PDR

Outline

- 1. Introduction
- 2. Property Directed Reachability
- 3. Generalization of PDR to QF_BV
- 4. Experimental Results
- 5. Summary

Summary

 PDR is an efficient algorithm for solving model checking problems.

- PDR with Boolean cubes performances poorly with arithmetic invariants.
- PDR with polytopes performances poorly with bit-level invariants.

 The hybrid formulation outperforms the pure versions.

Thank you!

for your

attention

twelp@berkeley.edu

References

- [Some11] F. Somenzi, A. R. Bradley: *IC3: Where Monolithic and Incremental Meet.*, FMCAD 2011.
- [Brad12] A. R. Bradley: *Understanding IC3.*, SAT 2012.
- [Welp13] T. Welp: *QF_BV Model Checking with Property Directed Reachability.* DATE 2013.
- [Brad11] A. R. Bradley, Z. Manna: *SAT-based model checking without unrolling.*, VMCAI 2011.
- [EénM11] N. Eén, A. Mishchenko, R. Brayton: *Efficient Implementation of Property Directed Reachability*, FMCAD 2011.

References

- [McMi03] K. L. McMillan: *Interpolation and SAT-based Model Checking*, CAV 2003.
- [Kind12] R. Kindermann, T. Junttila, I. Niemelä: *SMT-based Induction Methods for Timed Systems*, FORMATS 2012.
- [Hode12] K. Hoder, N. Bjørner: *Generalized Property Directed Reachability*, SAT 2012.
- [Kloo13] J. Kloos, R. Majumdar, F. Niksic and R. Piskac: *Incremental, Inductive Coverability*, CAV 2013.
- [Back13] J. Backes, M. Riedel: *Using Cubes of Non-state Variables With Property Directed Reachability*, DATE 2013.

References

[Beye12] D. Beyer: *Competition on Software Verification*, TACAS 2012.

[Gupt09] A. Gupta, A. Rybalchenko: *InvGen: An Efficient Invariant Generator*, CAV 2009.