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Motivation for Property Directed Reachability

e In 2011, Bradley proposed Property Directed Reachability (a.k.a
IC3) for model checking [Bradi11].

e Experiments indicate that PDR outperforms model checking based

on Interpolation [McMi03] on representative benchmark sets.
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Other Favorable Properties of PDR

® No unrolling of transition relation.
® Parallizable.
© Allows for initialization with known invariants.

© Good for finding counterexamples and proving that none exists.
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Model Checking

e Given are
— A set of initial states: I (x)
— A set of bad states: B(x)

— A transition relation: 7'(x, x")

e Question: Is a bad state reachable from an initial state using valid

transitions?
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Model Checking with PDR

Counterexample Sequence
init state 1
T T
Ir1 — 1 I — 0
Lo — 0 Ty = 1
I,T,B
——
PDR Trace
=3
0 1 2 3
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Proving a Safety Property with PDR

bad

e Can bad be reached within zero steps?
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Proving a Safety Property with PDR

Legend:

Initial set 1
init Bad set B
Proof oblig.
0 Cover

e No, only the [initial set is reachable within zero steps.

e Everything else is covered , i.e. not reachable.
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Proving a Safety Property with PDR

bad Legend:

Initial set 1
Bad set B
Proof oblig.
Cover

init

e Can bad be reached within one step?

e Conservatively, we initially assume that everything is | reachable |.
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Proving a Safety Property with PDR

bact Legend:

Initial set [
init Bad set B
¥ Proof oblig.
0 1 Cover

e Find a-in bad that is not yet covered .
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Proving a Safety Property with PDR

init
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e Expand _ using simulation.
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Proving a Safety Property with PDR
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e The - cannot be reached from the
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Initial set 1

Bad set B
¥ Proof oblig.

Cover
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Proving a Safety Property with PDR

= Legend:

Initial set [
init Bad set B
¥ Proof oblig.
0 1 Cover

e Hence, we can consider the _ covered .
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Proving a Safety Property with PDR

N ; Legend:

b Initial set 1
Bad set B
Proof oblig.
Cover

init

e Expand the covered cube as much as possible.
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Proving a Safety Property with PDR

Legend:

] Initial set 1
init Bad set B
¥ Proof oblig.
0 1 Cover

e Repeat with finding a new - In bad that is not covered .
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Proving a Safety Property with PDR

Legend:

| Initial set 1
init Bad set B
L Proof oblig.
0 1 Cover

° Again,the-cannot be reached from the | reachable | area in

the previous frame.
e Expand the covered cube.

e Now, bad is completely covered .
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Proving a Safety Property with PDR

i Legend:
- bad J

Initial set 1
Bad set B
Proof oblig.

2 Cover

init

e Can bad be reached within two steps?
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Proving a Safety Property with PDR
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Proving a Safety Property with PDR

init

19

e |dentified an inductive invariant disjoint from bad .

e This proves the property.
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Legend:

Initial set 1
Bad set B
Proof oblig.
Cover
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Property Directed Reachability for QF_BV

Original
Formulation
Atomic Reasoning " ____ Boolean
Unit e Cubes
Expansion of e Ternary
Proof Obligations ~ —~ Simulation
Strengths
Weaknesses
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Example Hybrid Invariant

I = 2xy=x)N(r+y<3)

T = W=y+ DA @ =2-2)AN 0 >y) A <)
B = (z+y>4)V(rmod2=1)
Y A Legend:

6 Initial set 1

A Bad set B

& Proof oblig.
1 Cover
) 4 6 T
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Example Hybrid Invariant
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Example Hybrid Invariant

I = 2xy=x)N(r+y<3)
T = W=y+ DA @' =2-2)A U >y) A (2 <x)
B = (z+y>4)V(rmod2=1)
Y A T T Legend:
6 - Initial set /
1 - Bad set B
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Example Hybrid Invariant

I = 2xy=x)AN(r+y<3)
T = W=y+ DA @ =2-2)AN 0 >y) A <)
B = (z+y>4)V(rmod2=1)

E fd L3 g, N Legend:
6 6 o Initial set [
A A | Bad set B
i E co ¥ Proof oblig.
1 E 2 Cover
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Example Hybrid Invariant

I = 2xy=x)AN(r+y<3)
T = W=y+ DA @ =2-2)AN 0 >y) A <)
B = (z+y>4)V(rmod2=1)

fd T T Legend:
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Example Hybrid Invariant

I = 2xy=x)AN(r+y<3)
T = W=y+ DA @ =2-2)AN 0 >y) A <)
B = (z+y>4)V(rmod2=1)
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Example Hybrid Invariant

I = 2xy=x)AN(r+y<3)
T = W=y+ DA @ =2-2)AN 0 >y) A <)
B = (z+y>4)V(rmod2=1)

Y AR Legend:
6 A HCE Initial set [
A 4 2 Bad set B
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Property Directed Reachability for QF_BV
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Example Hybrid Invariant

I = 2xy=x)N(r+y<3)
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Example Hybrid Invariant
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Example Hybrid Invariant
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Example Hybrid Invariant

I = 2xy=x)N(r+y<3)
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Example Hybrid Invariant
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Example Hybrid Invariant
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Example Hybrid Invariant

I = 2xy=x)N(r+y<3)
T = W=y+ DA @ =2-2)AN 0 >y) A <)
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Example Hybrid Invariant
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Example Hybrid Invariant
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Example Hybrid Invariant
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Property Directed Reachability for QF_BV
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Property Directed Reachability for QF_BV
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Example Hybrid Invariant
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Probabilistic Specialization
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Probabilistic Specialization
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Probabilistic Specialization

e The favorable event can be expected to happen in a constant
number of steps.

@

. - 1
E{trials until Boolean cube specialization} = C E Z(l — C)Z -
C
1=1
e Analogously, one calculates
- 1

E{trials until polytope specialization} = (1—6) E iCZ_l = 1

: — C

=1
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Simulation-based Expansion

Simulation-based expansion of proof obligations is e.g. used to expand

a bad ARU that is not yet covered:
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Simulation-based Expansion

Simulation-based expansion of proof obligations is e.g. used to expand

a bad ARU that is not yet covered:
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Simulation-based Expansion

The check whether or not an expansion is valid can be reduced to

simulation on sets of points [EEnM11].

Assume bad is defined as ¢; < 2 and we already

covered e; < —1 with

er = (r1 — 22+ 2) A (y1 Vy2)

Then we may expand an ARU 5 to a larger ARU a = if

e := (e7 < 2) A—(eq < —1) evaluates to true for all values in a.
—— ———

bad covered

53 January 23, 2014 @Tobias Welp




Ternary Simulation

Leta = (1 <21 <B5)A(0<x2 <3)A (y1 €-00-) A (y2 € 100-)

® Ternary Simulation

o @
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Ternary Simulation

Leta = (1 <21 <B5)A(0<x2 <3)A (y1 €-00-) A (y2 € 100-)

® Ternary Simulation

o @
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Ternary Simulation

Leta = (1 <21 <B5)A(0<x2 <3)A (y1 €-00-) A (y2 € 100-)

® Ternary Simulation

o @
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Ternary Simulation

Leta = (1 <21 <B5)A(0<x2 <3)A (y1 €-00-) A (y2 € 100-)

® Ternary Simulation

100- @ 0010
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Simulation-based Expansion

The check whether or not an expansion is valid can be reduced to

simulation on sets of points [EEnM11].

Assume bad is defined as ¢; < 2 and we already

covered e; < —1 with

er = (r1 — 22+ 2) A (y1 Vy2)

Then we may expand an ARU 5 to a larger ARU a = if

e := (e7 < 2) A—(eq < —1) evaluates to true for all values in a.
—— ———

bad covered
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Interval Simulation

Leta = (1 <21 <B5)A(0<x2 <3)A (y1 €-00-) A (y2 € 100-)

® Ternary Simulation

0---
@ 1, 5] ® Interval Simulation

0000
@>@Q @ 8
[0, 3] @W’ \@
@ [07 [0,1]
- [ 8, 7] 01]
@{ @ 0010

[—8, —7] 2, 2]

59 January 23, 2014 @Tobias Welp



Hybrid Simulation

leta:= (1 <21 <H)A0< 292 <3)A(y1 €-00-) A (y2 € 100-)
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Property Directed Reachability for QF_BV
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Experimental Setup

int MCI
foo 1
while (x) Program M2C|
{ e E Verifier MCI
} 3
assert (!'x);
}
OO
@)
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Benchmark Sets

Bitvector set of SV-Comp [Beye12] InvGen-Benchmarks [Gupt09]

int
int foo (int n)
foo (int n) {
{ int x = 0;
int x = 1; assume (n>=0) ;
while (1) while(x < n)
{ {
X += 2%*n; X——;
assert (x) ; }
} assert (x <= n);
} ¥
Mostly Logic Invariants Mostly Arithmetic Invariants
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Overall Performance
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Overall Performance
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Impact of Simulation Type
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Impact of Simulation Type
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Comparison vs ABC PDR

timeout
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Summary

71

(// e PDRis an efficient algorithm for
— solving model checking problems.
| ime (s - "’y ]L]_

e PDR with Boolean cubes performances A

poorly with arithmetic invariants. 4
e PDR with polytopes performances poorly e

with bit-level invariants. ' '
i° e The hybrid formulation outperforms
§ @ o (msons the pure versions.
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Thank you!

for your

attention

twelp@berkeley.edu
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